Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 275: 104825, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36754348

ABSTRACT

Cytoplasmic male sterility (CMS) is critical in maximizing crop yield and quality by utilizing tobacco heterosis. However, the mechanism of tobacco CMS formation remains unknown. Using paraffin section observation, transcriptome sequencing, and TMT proteomic analysis, this study describes the differences in expression profiles in morphology, transcription, and translation between the sua-CMS tobacco line (MSYY87) and its corresponding maintainer line (YY87). According to the microspore morphology, MSYY87 began to exhibit abnormal microspore development during the early stages of germination and differentiation (androgynous primordium differentiation stage). According to transcriptomic and proteomic analyses, 17 genes/proteins involved in lipid transport/binding and phenylpropane metabolism were significantly down-regulated at both the mRNA and protein levels. Through further analysis, we identified some key genes that may be involved in tobacco male sterility, including ß-GLU related to energy metabolism, 4CL and bHLHs related to anther wall formation, nsLTPs related to pollen germination and anther cuticle, and bHLHs related to pollen tapetum degradation. We speculate that the down-regulation of these genes affects the normal physiological metabolism, making tobacco plants show male sterility. SIGNIFICANCE: Cytoplasmic male sterility (CMS) plays a vital role in utilizing tobacco heterosis and enhancing crop yield and quality. We observed paraffin sections and conducted transcriptome sequencing and mitochondrial proteomics to examine the tobacco CMS line Yunyan 87 (MSYY87) and its maintainer line Yunyan 87 (YY87). The down-regulation expression of ß-GLU resulted in insufficient ATP supply, which resulted in disordered energy metabolism. The down-regulation expression of 4CL, nsLTPs and bHLHs may affect the formation of anther wall and anther cuticle, pollen germination, as well as the degradation of pollen tapetum. These various abnormal physiological processes, the male sterility of tobacco is finally caused. The findings shed light on the molecular mechanisms of tobacco CMS and serve as a model for fertility research in other flowering plants.


Subject(s)
Infertility, Male , Transcriptome , Male , Humans , Nicotiana/genetics , Proteome/genetics , Plant Infertility/genetics , Proteomics , Paraffin , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Flowers
2.
Front Plant Sci ; 13: 940787, 2022.
Article in English | MEDLINE | ID: mdl-35991430

ABSTRACT

Potassium (K+) is essential for crop growth. Increasing the K+ content can often directly promote the improvement of crop yield and quality. Heterosis plays an important role in genetic improvement and leads to genetic gains. We found that the K+ content of tobacco showed significant heterosis, which is highly significant for cultivating tobacco varieties with high K+ content. However, the mechanism by which K+ content heterosis occurs in tobacco leaves is not clear. In this study, a comprehensive comparative transcriptome sequencing analysis of root samples from the hybrid G70 × GDH11 and its parental inbred lines G70 and GDH11 was performed to elucidate the importance of the root uptake capacity of K+ in the formation of heterosis. The results showed that 29.53% and 60.49% of the differentially expressed genes (DEGs) exhibited dominant and over-dominant expression patterns, respectively. These non-additive upregulated DEGs were significantly enriched in GO terms, such as metal ion transport and reaction, ion balance and homeostasis, ion channel activity, root meristem growth, and regulation of root hairs. The KEGG annotation results indicated that these genes were mainly involved in the pathways such as energy metabolism, carbohydrate formation, amino acid metabolism, and signal transduction. Further analysis showed that probable potassium transporter 17 (NtKT17) and potassium transporter 5-like (NtKT5), associated with potassium ion absorption, glutamate receptor 2.2-like and glutamate receptor 2.8-like, associated with ion channel activity, LOC107782957, protein detoxification 42-like, and probable glutamate carboxypeptidase 2, associated with root configuration, showed a significantly higher expression in the hybrids. These results indicated that the over-dominant expression pattern of DEGs played a key role in the heterosis of K+ content in tobacco leaves, and the overexpression of the genes related to K+ uptake, transport, and root development in hybrids helped to improve the K+ content of plants, thus showing the phenomenon of heterosis.

3.
BMC Plant Biol ; 22(1): 335, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35820807

ABSTRACT

BACKGROUND: Potassium(K+) plays a vital role in improving the quality of tobacco leaves. However, how to improve the potassium content of tobacco leaves has always been a difficult problem in tobacco planting. K+ content in tobacco hybrid is characterized by heterosis, which can improve the quality of tobacco leaves, but its underlying molecular genetic mechanisms remain unclear. RESULTS: Through a two-year field experiment, G70×GDH11 with strong heterosis and K326×GDH11 with weak heterosis were screened out. Transcriptome analyses revealed that 80.89% and 57.28% of the differentially expressed genes (DEGs) in the strong and weak heterosis combinations exhibited an overdominant expression pattern, respectively. The genes that up-regulated the overdominant expression in the strong heterosis hybrids were significantly enriched in the ion homeostasis. Genes involved in K+ transport (KAT1/2, GORK, AKT2, and KEA3), activity regulation complex (CBL-CIPK5/6), and vacuole (TPKs) genes were overdominant expressed in strong heterosis hybrids, which contributed to K+ homeostasis and heterosis in tobacco leaves. CONCLUSIONS: K+ homeostasis and accumulation in tobacco hybrids were collectively improved. The overdominant expression of K+ transport and homeostasis-related genes conducted a crucial role in the heterosis of K+ content in tobacco leaves.


Subject(s)
Gene Expression Regulation, Plant , Nicotiana , Homeostasis , Plant Leaves/genetics , Potassium , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...