Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2311961, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461546

ABSTRACT

Optimizing the electrode/electrolyte interface structure is the key to realizing high-voltage Li-metal batteries (LMBs). Herein, a functional electrolyte is introduced to synergetically regulate the interface layer structures on the high-voltage cathode and the Li-metal anode. Saccharin sodium (NaSH) as a multifunctional electrolyte additive is employed in fluorinated solvent-based electrolyte (FBE) for robust interphase layer construction. On the one hand, combining the results of ex-situ techniques and in-situ electrochemical dissipative quartz crystal microbalance (EQCM-D) technique, it can be seen that the solid electrolyte interface (SEI) layer constructed by NaSH-coupled fluoroethylene carbonate (FEC) on Li-metal anode significantly inhibits the growth of lithium dendrites and improves the cyclic stability of the anode. On the other hand, the experimental results also confirm that the cathode-electrolyte interface (CEI) layer induced by NaSH-coupled FEC effectively protects the active materials of LiCoO2 and improves their structural stability under high-voltage cycling, thus avoiding the material rupture. Moreover, theoretical calculation results show that the addition of NaSH alters the desolvation behavior of Li+ and enhances the transport kinetics of Li+ at the electrode/electrolyte interface. In this contribution, the LiCoO2 ǁLi full cell containing FBE+NaSH results in a high capacity retention of 80% after 530 cycles with a coulombic efficiency of 99.8%.

2.
Article in English | MEDLINE | ID: mdl-24945863

ABSTRACT

A fluorescent Hg(2+)-selective chemosensor, 2,5-dimethoxybenzaldehyde thiosemicarbazone (1), was quantitatively prepared by grinding 2,5-dimethoxybenzaldehyde and thiosemicarbazide together in a ball mill for 15min. The excitation and emission maxima of compound 1 are 347 and 450nm, respectively. The reaction of this ligand with Hg(2+) was investigated by FT-IR, (1)H NMR, and fluorescence titration. Results show that the composition of the resulting Hg complex 1-Hg is 2:1 1:Hg, and that the S and imino N atoms serve as the binding sites of the ligand to the Hg(2+) ions. Coordination-assisted fluorescence quenching results show that compound 1 exhibits a highly selective fluorescence response to trace amounts of Hg(2+) in water. More importantly, the resulting complex 1-Hg can be used as a turn-on fluorescence probe for I(-) at a detection limit of 8.4×10(-8)M. Thus, compound 1 is a relatively stable, sequential, cyclic fluorescent probe for Hg(2+) and I(-).


Subject(s)
Fluorescent Dyes/chemistry , Iodides/analysis , Mercury/analysis , Thiosemicarbazones/chemistry , Water Pollutants, Chemical/analysis , Fluorescent Dyes/chemical synthesis , Limit of Detection , Spectrometry, Fluorescence/methods , Thiosemicarbazones/chemical synthesis , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...