Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; : e2405279, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240017

ABSTRACT

This study introduces magnetized EGaIn@Fe, an innovative material synthesized by incorporating iron powder into the eutectic gallium-indium alloy (EGaIn). Unlike traditional methods requiring electrolyte environments for electrical control, EGaIn@Fe can be manipulated using external magnetic fields, expanding control from 2D to 3D spaces. The material exhibits both active and passive splitting capabilities under magnetic and electrical control, demonstrating exceptional deformability, precision, and flexibility. EGaIn@Fe shows significant promise in applications such as microfluidic channels, circuit repair, and soft robotics. Specifically, 5 wt.% EGaIn@Fe is optimal for microfluidic tasks and circuit repairs in confined spaces, while higher concentrations (10 and 15 wt.%) enhance 3D control and reduce material usage. Additionally, 20 wt.% EGaIn@Fe displays octopus-like movements for navigating impassable channels. EGaIn@Fe can enhance fluid manipulation in microfluidics, bridge gaps in circuit repairs, and enable flexible actuators in soft robotics, driving advancements in adaptive materials and technologies.

SELECTION OF CITATIONS
SEARCH DETAIL