Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Discov Oncol ; 15(1): 255, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955924

ABSTRACT

CD320, which is a transmembrane protein responsible for facilitating the absorption of vitamin B12, plays a key role in this process. However, the relationships between CD320 and immune cell infiltration levels remain unclear, with limited studies investigating the diagnostic and prognostic significance of CD320 in hepatocellular carcinoma. We used various databases, including the TIMER, GEPIA, UALCAN and TCGA databases to investigate the expression levels of CD320 in hepatocellular carcinoma. Subsequently, we analyzed the prognosis of hepatocellular carcinoma patients with different expression levels of CD320. Furthermore, we also performed Western blot, immunohistochemistry, and immunofluorescence analyses to validate the results of the database analysis. Finally, the functions of CD320 in hepatocellular carcinoma were also confirmed via relevant cell experiments and angiogenesis assays. We found that CD320 expression was significantly upregulated in tumor vascular endothelial cells. Moreover, the knockdown of CD320 led to a reduction in angiogenesis in endothelial cells. Increased expression of CD320 was also correlated with a poor prognosis in patients with hepatocellular carcinoma, which suggested that CD320 may be a potential prognostic marker. Finally, TIMER analysis demonstrated that the infiltration of six immune cell types was significantly associated with high expression levels of CD320 in hepatocellular carcinoma. Herein, we demonstrated that CD320 may play an important role in angiogenesis in hepatocellular carcinoma. These findings suggested that CD320 may be a potential clinical prognostic marker and immunotherapy target for hepatocellular carcinoma.

2.
Microbiol Res ; 285: 127750, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761489

ABSTRACT

The progress of viral infection involves numerous transcriptional regulatory events. The identification of the newly synthesized transcripts helps us to understand the replication mechanisms and pathogenesis of the virus. Here, we utilized a time-resolved technique called metabolic RNA labeling approach called thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) to differentially elucidate the levels of steady-state and newly synthesized RNAs of BHK21 cell line in response to human coronavirus OC43 (HCoV-OC43) infection. Our results showed that the Wnt/ß-catenin signaling pathway was significantly enriched with the newly synthesized transcripts of BHK21 cell line in response to HCoV-OC43 infection. Moreover, inhibition of the Wnt pathway promoted viral replication in the early stage of infection, but inhibited it in the later stage of infection. Furthermore, remdesivir inhibits the upregulation of the Wnt/ß-catenin signaling pathway induced by early infection with HCoV-OC43. Collectively, our study showed the diverse roles of Wnt/ß-catenin pathway at different stages of HCoV-OC43 infection, suggesting a potential target for the antiviral treatment. In addition, although infection with HCoV-OC43 induces cytopathic effects in BHK21 cells, inhibiting apoptosis does not affect the intracellular replication of the virus. Monitoring newly synthesized RNA based on such time-resolved approach is a highly promising method for studying the mechanism of viral infections.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Coronavirus OC43, Human , Transcriptome , Virus Replication , Wnt Signaling Pathway , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/drug effects , Virus Replication/drug effects , Cell Line , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/metabolism , Antiviral Agents/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/metabolism , Animals , Coronavirus Infections/virology , Coronavirus Infections/drug therapy
3.
Sci Rep ; 13(1): 12657, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542076

ABSTRACT

The neutron capture cross section of [Formula: see text]Ta is relevant to s-process of nuclear astrophysics, extraterrestrial samples analysis in planetary geology and new generation nuclear energy system design. The [Formula: see text]Ta([Formula: see text]) cross section had been measured between 1 eV and 800 keV at the back-streaming white neutron facility (Back-n) of China spallation neutron source(CSNS) using the time-of-flight (TOF) technique and [Formula: see text] liquid scintillator detectors. The experimental results are compared with the data of several evaluated libraries and previous experiments in the resolved and unresolved resonance region. Resonance parameters are extracted using the R-Matrix code SAMMY in the 1-700 eV region. The astrophysical Maxwell average cross section(MACS) from kT = 5 to 100 keV is calculated over a sufficiently wide range of neutron energies. For the characteristic thermal energy of an astrophysical site, at kT = 30keV the MACS value of [Formula: see text]Ta is 834 ± 75 mb, which shows an obvious discrepancy with the Karlsruhe Astrophysical Database of Nucleosynthesis in Stars (KADoNiS) recommended value 766 ± 15 mb. The new measurements strongly constrain the MACS of [Formula: see text]Ta([Formula: see text]) reaction in the stellar s-process temperatures.

4.
Front Immunol ; 14: 1158360, 2023.
Article in English | MEDLINE | ID: mdl-37483608

ABSTRACT

Background: Liver hepatocellular carcinoma (LIHC) is one of the malignant tumors with high incidence as well as high death, which is ranked as the sixth most common tumor and the third highest mortality worldwide. CD93, a transmembrane protein, has been widely reported to play an important role in different types of diseases, including many types of cancer by mainly functioning in extracellular matrix formation and vascular maturation. However, there are few researches focusing on the role and potential function of CD93 in LIHC. Methods: In this study, we comprehensively analyzed the relationship between CD93 and LIHC. We not only discovered transcriptional expression of CD93 in LIHC by using the TIMER, GEPIA and UALCAN database, but also performed WB and IHC to verify the protein expression of CD93 in LIHC. Meantime, Kaplan-Meier Plotter Database Analysis were used to assess the prognosis of CD93 in LIHC. After knowing close correlation between CD93 expression and LIHC, there were STRING, GeneMania and GO and KEGG enrichment analyses to find how CD93 functions in LIHC. We further applied CIBERSORT Algorithm to explore the correlation between CD93 and immune cells and evaluate prognostic value of CD93 based on them in LIHC patients. Results: The transcriptional and protein expression of CD93 were both obviously increased in LIHC by above methods. There was also a significant and close correlation between the expression of CD93 and the prognosis of LIHC patients by using Kaplan-Meier Analysis, which showed that LIHC patients with elevated expression of CD93 were associated with a predicted poor prognosis. We found that the functions of CD93 in different cancers are mainly related to Insulin like growth factor binding protein 7 Gene (IGFBP7)/CD93 pathway via STRING, GeneMania and functional enrichment analyses. Further, our data obtained from CIBERSORT Algorithm suggested CD93 was also associated with the immune response. There is a close positive correlation between CD93 expression and the infiltration levels of all six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). Importantly, CD93 can affect the prognosis of patients with LIHC partially due to immune infiltration. Conclusion: Our results demonstrated CD93 may be a candidate predictor of clinical prognosis and immunotherapy response in LIHC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Algorithms , Immunotherapy
5.
Clin Transl Med ; 12(5): e849, 2022 05.
Article in English | MEDLINE | ID: mdl-35593197

ABSTRACT

Sepsis remains the most lethal infectious disease and substantially impairs patient prognosis after liver transplantation (LT). Our previous study reported a role of the pannexin 1 (PANX1)-interleukin-33 (IL-33) axis in activating innate immunity to protect against methicillin-resistant Staphylococcus aureus infection; however, the role of PANX1 in regulating adaptive immunity in sepsis and the underlying mechanism are unclear. In this study, we examined the role of the PANX1-IL-33 axis in protecting against sepsis caused by a gram-negative bacterial infection in an independent LT cohort. Next, in animal studies, we assessed the immunological state of Panx1-/- mice with lipopolysaccharide (LPS)-induced endotoxemia and then focused on the cytokine storm and regulatory T cells (Tregs), which are crucial for the resolution of inflammation. To generate liver-specific Panx1-deficient mice and mimic clinical LT procedures, a mouse LT model was established. We demonstrated that hepatic PANX1 deficiency exacerbated LPS-induced endotoxemia and dysregulated the immune response in the mouse LT model. In hepatocytes, we confirmed that PANX1 positively regulated IL-33 synthesis after LPS administration. We showed that the adenosine triphosphate-P2X7 pathway regulated the hepatic PANX1-IL-33 axis during endotoxemia in vitro and in vivo. Recombinant IL-33 treatment rescued LPS-induced endotoxemia by increasing the numbers of liver-infiltrating ST2+ Tregs and attenuating the cytokine storm in hepatic PANX1-deficient mice. In conclusion, our findings revealed that the hepatic PANX1-IL-33 axis protects against endotoxemia and liver injury by targeting ST2+ Tregs and promoting the early resolution of hyperinflammation.


Subject(s)
Endotoxemia , Methicillin-Resistant Staphylococcus aureus , Sepsis , Animals , Connexins/genetics , Connexins/metabolism , Cytokine Release Syndrome , Disease Models, Animal , Endotoxemia/chemically induced , Humans , Inflammation/chemically induced , Inflammation/complications , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Lipopolysaccharides/toxicity , Liver/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Sepsis/complications , T-Lymphocytes, Regulatory/metabolism
6.
MedComm (2020) ; 3(2): e137, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35474948

ABSTRACT

CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL-2, IL-10, and TGF-ß, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.

7.
Hepatobiliary Pancreat Dis Int ; 21(2): 106-112, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34583911

ABSTRACT

Mammalian target of rapamycin (mTOR) inhibitor as an attractive drug target with promising antitumor effects has been widely investigated. High quality clinical trial has been conducted in liver transplant (LT) recipients in Western countries. However, the pertinent studies in Eastern world are paucity. Therefore, we designed a clinical trial to test whether sirolimus can improve recurrence-free survival (RFS) in hepatocellular carcinoma (HCC) patients beyond the Milan criteria after LT. This is an open-labeled, single-arm, prospective, multicenter, and real-world study aiming to evaluate the clinical outcomes of early switch to sirolimus-based regimens in HCC patients after LT. Patients with a histologically proven HCC and beyond the Milan criteria will be enrolled. The initial immunosuppressant regimens are center-specific for the first 4-6 weeks. The following regimens integrated sirolimus into the regimens as a combination therapy with reduced calcineurin inhibitors based on the condition of patients and centers. The study is planned for 4 years in total with a 2-year enrollment period and a 2-year follow-up. We predict that sirolimus conversion regimen will provide survival benefits for patients particular in the key indicator RFS as well as better quality of life. If the trial is conducted successfully, we will have a continued monitoring over a longer follow-up time to estimate indicator of overall survival. We hope that the outcome will provide better evidence for clinical decision-making and revising treatment guidelines based on Chinese population data. Trial register: Trial registered at http://www.chictr.org.cn: ChiCTR2100042869.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/surgery , Humans , Immunosuppressive Agents/adverse effects , Liver Neoplasms/drug therapy , Liver Neoplasms/surgery , Liver Transplantation/methods , Multicenter Studies as Topic , Neoplasm Recurrence, Local/drug therapy , Prospective Studies , Quality of Life , Sirolimus/adverse effects , Treatment Outcome
8.
Front Cell Dev Biol ; 9: 748269, 2021.
Article in English | MEDLINE | ID: mdl-34938730

ABSTRACT

Background: Liver hepatocellular carcinoma (LIHC) is the third leading cause of cancer-related death and the sixth most common solid tumor worldwide. In the tumor microenvironment, the cross-talk between cancer cells, immune cells, and stromal cells exerts significant effects on neoplasia and tumor development and is modulated in part by chemokines. Chemokine (C-C motif) ligands (CCL) can directly target tumor cells and stromal cells, and they have been shown to regulate tumor cell proliferation, cancer stem-like cell properties, cancer invasiveness and metastasis, which directly and indirectly affect tumor immunity and influence cancer progression, therapy and patient outcomes. However, the prognostic values of chemokines CCL in LIHC have not been clarified. Methods: In this study, we comprehensively analyzed the relationship between transcriptional chemokines CCL and disease progression of LIHC using the ONCOMINE dataset, GEPIA, UALCAN, STRING, WebGestalt, GeneMANIA, TRRUST, DAVID 6.8, LinkedOmics, TIMER, GSCALite, and Open Targets. We validated the protein levels of chemokines CCL through western blot and immunohistochemistry. Results: The transcriptional levels of CCL5/8/11/13/15/18/20/21/25/26/27/28 in LIHC tissues were significantly elevated while CCL2/3/4/14/23/24 were significantly reduced. A significant correlation was found between the expression of CCL14/25 and the pathological stage of LIHC patients. LIHC patients with low transcriptional levels of CCL14/21 were associated with a significantly poor prognosis. The functions of differentially expressed chemokines CCL were primarily related to the chemokine signaling pathway, cytokine-cytokine receptor interactions, and TNF-α signaling pathway. Our data suggested that RELA/REL, NFKB1, STAT1/3/6, IRF3, SPI1, and JUN were key transcription factors for chemokines CCL. We found significant correlations among the expression of chemokines CCL and the infiltration of six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) and immune checkpoints (PD-1. PD-L1, and CTLA-4). The western blot and immunohistochemistry results showed that protein expression levels of CCL5 and CCL20 were upregulated in LIHC. CCL5 and CCL20 were significantly correlated with the clinical outcome of patients with LIHC, and could be negatively regulated by some drugs or small molecules. Conclusions: Our results may provide novel insights for the potential suitable targets of immunological therapy and prognostic biomarkers for LIHC.

9.
Sci Transl Med ; 13(606)2021 08 11.
Article in English | MEDLINE | ID: mdl-34380770

ABSTRACT

Liver transplantation patients are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) infection, but the molecular mechanism remains unclear. We found that genetic predisposition to low pannexin 1 (PANX1) expression in donor livers was associated with MRSA infection in human liver transplantation recipients. Using Panx1 and Il-33-knockout mice for liver transplantation models with MRSA tail vein injection, we demonstrated that Panx1 deficiency increased MRSA-induced liver injury and animal death. We found that decreased PANX1 expression in the liver led to reduced release of adenosine triphosphate (ATP) from hepatocytes, which further reduced the activation of P2X2, an ATP-activating P2X receptor. Reduced P2X2 function further decreased the NLRP3-mediated release of interleukin-33 (IL-33), reducing hepatic recruitment of macrophages and neutrophils. Administration of mouse IL-33 to Panx1-/- mice significantly (P = 0.011) ameliorated MRSA infection and animal death. Reduced human hepatic IL-33 protein abundance also associated with increased predisposition to MRSA infection. Our findings reveal that genetic predisposition to reduced PANX1 function increases risk for MRSA infection after liver transplantation by decreasing hepatic host innate immune defense, which can be attenuated by IL-33 treatment.


Subject(s)
Liver Transplantation , Methicillin-Resistant Staphylococcus aureus , Adenosine Triphosphate , Animals , Connexins , Humans , Interleukin-33 , Living Donors , Mice , Nerve Tissue Proteins/genetics
10.
Liver Transpl ; 27(12): 1867, 2021 12.
Article in English | MEDLINE | ID: mdl-34176208
SELECTION OF CITATIONS
SEARCH DETAIL