Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 14(20): e1704035, 2018 May.
Article in English | MEDLINE | ID: mdl-29665268

ABSTRACT

Metal-organic frameworks (MOFs) with tunable compositions and morphologies are recognized as efficient self-sacrificial templates to achieve function-oriented nanostructured materials. Moreover, it is urgently needed to develop highly efficient noble metal-free oxygen evolution reaction (OER) electrocatalysts to accelerate the development of overall water splitting green energy conversion systems. Herein, a facile and cost-efficient strategy to synthesize Co9 S8 nanoparticles-embedded N/S-codoped carbon nanofibers (Co9 S8 /NSCNFs) as highly active OER catalyst is developed. The hybrid precursor of core-shell ZIF-wrapped CdS nanowires is first prepared and then leads to the formation of uniformly dispersed Co9 S8 /N, S-codoped carbon nanocomposites through a one-step calcination reaction. The optimal Co9 S8 /NSCNFs-850 is demonstrated to possess excellent electrocatalytic performance for OER in 1.0 m KOH solution, affording a low overpotential of 302 mV to reach the current density of 10 mA cm-2 , a small Tafel slope of 54 mV dec-1 , and superior long-term stability for 1000 cyclic voltammetry cycles. The favorable results raise a concept of exploring more MOF-based nanohybrids as precursors to induce the synthesis of novel porous nanomaterials as non-noble-metal electrocatalysts for sustainable energy conversion.

2.
Small ; 13(17)2017 05.
Article in English | MEDLINE | ID: mdl-28244189

ABSTRACT

Metal-organic frameworks (MOFs) featuring versatile topological architectures are considered to be efficient self-sacrificial templates to achieve mesoporous nanostructured materials. A facile and cost-efficient strategy is developed to scalably fabricate binary metal oxides with complex hollow interior structures and tunable compositions. Bimetal-organic frameworks of Ni-Co-BTC solid microspheres with diverse Ni/Co ratios are readily prepared by solvothermal method to induce the Ni x Co3-x O4 multishelled hollow microspheres through a morphology-inherited annealing treatment. The obtained mixed metal oxides are demonstrated to be composed of nanometer-sized subunits in the shells and large void spaces left between adjacent shells. When evaluated as anode materials for lithium-ion batteries, Ni x Co3-x O4 -0.1 multishelled hollow microspheres deliver a high reversible capacity of 1109.8 mAh g-1 after 100 cycles at a current density of 100 mA g-1 with an excellent high-rate capability. Appropriate capacities of 832 and 673 mAh g-1 could also be retained after 300 cycles at large currents of 1 and 2 A g-1 , respectively. These prominent electrochemical properties raise a concept of synthesizing MOFs-derived mixed metal oxides with multishelled hollow structures for progressive lithium-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...