Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 380(6640): eadd6220, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36862765

ABSTRACT

Individual free fatty acids (FAs) play important roles in metabolic homeostasis, many through engagement with more than 40G protein-coupled receptors. Searching for receptors to sense beneficial omega-3 FAs of fish oil enabled the identification of GPR120, which is involved in a spectrum of metabolic diseases. Here, we report six cryo-electron microscopy structures of GPR120 in complex with FA hormones or TUG891 and Gi or Giq trimers. Aromatic residues inside the GPR120 ligand pocket were responsible for recognizing different double-bond positions of these FAs and connect ligand recognition to distinct effector coupling. We also investigated synthetic ligand selectivity and the structural basis of missense single-nucleotide polymorphisms. We reveal how GPR120 differentiates rigid double bonds and flexible single bonds. The knowledge gleaned here may facilitate rational drug design targeting to GPR120.


Subject(s)
Drug Design , Fatty Acids, Omega-3 , Receptors, G-Protein-Coupled , Cryoelectron Microscopy , Ligands , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/metabolism , Humans , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Protein Conformation , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/metabolism , Mutation, Missense , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...