Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Dig Liver Dis ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39227294

ABSTRACT

BACKGROUND: To construct a nomogram for predicting necrotizing enterocolitis (NEC) in preterm infants. METHODS: A total of 4,724 preterm infants who were admitted into 8 hospitals between April 2019 and September 2020 were initially enrolled this retrospective multicenter cohort study. Finally, 1,092 eligible cases were divided into training set and test set based on a 7:3 ratio. A univariate logistic regression analysis was performed to compare the variables between the two groups. Stepwise backward regression, LASSO regression, and Boruta feature selection were utilized in the multivariate analysis to identify independent risk factors. Then a nomogram model was constructed based on the identified risk factors. RESULTS: Risk factors for NEC included gestational diabetes mellitus, gestational age, small for gestational age, patent ductus arteriosus, septicemia, red blood cell transfusion, intravenous immunoglobulin, severe feeding intolerance, and absence of breastfeeding. The nomogram model developed based on these factors showed well discriminative ability. Calibration and decision curve analysis curves confirmed the good consistency and clinical utility of the model. CONCLUSIONS: We developed a nomogram model with strong discriminative ability, consistency, and clinical utility for predicting NEC. This model could be valuable for the early prediction of preterm infants at risk of developing NEC.

2.
Acta Biomater ; 186: 286-299, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39098445

ABSTRACT

Cell volume as a characteristic of changes in response to external environmental cues has been shown to control the fate of stem cells. However, its influence on macrophage behavior and macrophage-mediated inflammatory responses have rarely been explored. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to regulate macrophage polarization towards anti-inflammatory phenotypes, thereby enabling to reverse macrophage-mediated inflammation response. Specifically, lower the volume of primary macrophages can induce both resting macrophages (M0) and stimulated pro-inflammatory macrophages (M1) to up-regulate the expression of anti-inflammatory factors and down-regulate pro-inflammatory factors. Further mechanistic investigation revealed that macrophage polarization resulting from changing cell volume might be mediated by JAK/STAT signaling pathway evidenced by the transcription sequencing analysis. We further propose to apply this strategy for the treatment of arthritis via direct introduction of PEG into the joint cavity to modulate synovial macrophage-related inflammation. Our preliminary results verified the credibility and effectiveness of this treatment evidenced by the significant inhibition of cartilage destruction and synovitis at early stage. In general, our results suggest that cell volume can be a biophysical regulatory factor to control macrophage polarization and potentially medicate inflammatory response, thereby providing a potential facile and effective therapy for modulating macrophage mediated inflammatory responses. STATEMENT OF SIGNIFICANCE: Cell volume has recently been recognized as a significantly important biophysical signal in regulating cellular functionalities and even steering cell fate. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to induce M1 pro-inflammatory macrophages to polarize towards anti-inflammatory M2 phenotype, and this immunomodulatory effect may be mediated by the JAK/STAT signaling pathway. We also proposed the feasible applications of this PEG-induced volume regulation approach towards the treatment of osteoarthritis (OA), wherein our preliminary results implied an effective alleviation of early synovitis. Our study on macrophage polarization mediated by cell volume may open up new pathways for immune regulation through microenvironmental biophysical clues.


Subject(s)
Inflammation , Janus Kinases , Macrophages , STAT Transcription Factors , Signal Transduction , Macrophages/metabolism , Macrophages/pathology , Signal Transduction/drug effects , Animals , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Inflammation/pathology , Mice , Polyethylene Glycols/pharmacology , Mice, Inbred C57BL , Male
3.
Cancer Res ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073362

ABSTRACT

Colorectal cancer (CRC) is frequently diagnosed in advanced stages, highlighting the need for developing approaches for early detection. Liquid biopsy using cell-free DNA (cfDNA) fragmentomics is a promising approach, but the clinical application is hindered by complexity and cost. This study aimed to develop an integrated model using cfDNA fragmentomics for accurate, cost-effective early-stage CRC detection. Plasma cfDNA was extracted and sequenced from a training cohort of 360 participants, including 176 CRC patients and 184 healthy controls. An ensemble stacked model comprising five machine learning models was employed to distinguish CRC patients from healthy controls using five cfDNA fragmentomic features. The model was validated in an independent cohort of 236 participants (117 CRC patients and 119 controls) and a prospective cohort of 242 participants (129 CRC patients and 113 controls). The ensemble stacked model showed remarkable discriminatory power between CRC patients and controls, outperforming all base models and achieving a high area under the ROC curve (AUC) of 0.986 in the validation cohort. It reached 94.88% sensitivity and 98% specificity for detecting CRC in the validation cohort, with sensitivity increasing as cancer progressed. The model also demonstrated consistently high accuracy in within-run and between-run tests and across various conditions in healthy individuals. In the prospective cohort, it achieved 91.47% sensitivity and 95.58% specificity. This integrated model capitalizes on the multiplex nature of cfDNA fragmentomics to achieve high sensitivity and robustness, offering significant promise for early CRC detection and broad patient benefit.

4.
Nat Commun ; 15(1): 5039, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866775

ABSTRACT

Urate, the physiological form of uric acid and a potent antioxidant in serum, plays a pivotal role in scavenging reactive oxygen species. Yet excessive accumulation of urate, known as hyperuricemia, is the primary risk factor for the development of gout. The high-capacity urate transporter GLUT9 represents a promising target for gout treatment. Here, we present cryo-electron microscopy structures of human GLUT9 in complex with urate or its inhibitor apigenin at overall resolutions of 3.5 Å and 3.3 Å, respectively. In both structures, GLUT9 exhibits an inward open conformation, wherein the substrate binding pocket faces the intracellular side. These structures unveil the molecular basis for GLUT9's substrate preference of urate over glucose, and show that apigenin acts as a competitive inhibitor by occupying the substrate binding site. Our findings provide critical information for the development of specific inhibitors targeting GLUT9 as potential therapeutics for gout and hyperuricemia.


Subject(s)
Apigenin , Cryoelectron Microscopy , Glucose Transport Proteins, Facilitative , Uric Acid , Humans , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/chemistry , Uric Acid/metabolism , Uric Acid/chemistry , Apigenin/pharmacology , Apigenin/chemistry , Binding Sites , Protein Binding , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Models, Molecular , Gout/drug therapy , Gout/metabolism , HEK293 Cells
5.
Article in English | MEDLINE | ID: mdl-38885107

ABSTRACT

Monocular Depth Estimation (MDE) plays a vital role in applications such as autonomous driving. However, various attacks target MDE models, with physical attacks posing significant threats to system security. Traditional adversarial training methods, which require ground-truth labels, are not directly applicable to MDE models that lack ground-truth depth. Some self-supervised model hardening techniques (e.g., contrastive learning) overlook the domain knowledge of MDE, resulting in suboptimal performance. In this work, we introduce a novel self-supervised adversarial training approach for MDE models, leveraging view synthesis without the need for ground-truth depth. We enhance adversarial robustness against real-world attacks by incorporating L0-norm-bounded perturbation during training. We evaluate our method against supervised learning-based and contrastive learning-based approaches specifically designed for MDE. Our experiments with two representative MDE networks demonstrate improved robustness against various adversarial attacks, with minimal impact on benign performance. Our code: https://github.com/Bob-cheng/DepthModelHardening.

6.
Regen Biomater ; 11: rbae047, 2024.
Article in English | MEDLINE | ID: mdl-38903560

ABSTRACT

Development of piezoelectric biomaterials with high piezoelectric performance, while possessing excellent flexibility, biocompatibility, and biodegradability still remains a great challenge. Herein, a flexible, biocompatible and biodegradable piezoelectric ß-glycine-alginate-glycerol (Gly-Alg-Glycerol) film with excellent in vitro and in vivo sensing performance was developed. Remarkably, a single, monolithic ß-glycine spherulite, instead of more commonly observed multiple spherulites, was formed in alginate matrix, thereby resulting in outstanding piezoelectric property, including high piezoelectric constant (7.2 pC/N) and high piezoelectric sensitivity (1.97 mV/kPa). The Gly-Alg-Glycerol film exhibited superior flexibility, enabling complex shape-shifting, e.g. origami pigeon, 40% tensile strain, and repeated bending and folding deformation without fracture. In vitro, the flexible Gly-Alg-Glycerol film sensor could detect subtle pulse signal, sound wave and recognize shear stress applied from different directions. In addition, we have demonstrated that the Gly-Alg-Glycerol film sensor sealed by polylactic acid and beeswax could serve as an in vivo sensor to monitor physiological pressure signals such as heartbeat, respiration and muscle movement. Finally, the Gly-Alg-Glycerol film possessed good biocompatibility, supporting the attachment and proliferation of rat mesenchymal stromal cells, and biodegradability, thereby showing great potential as biodegradable piezoelectric biomaterials for biomedical sensing applications.

7.
Article in English | MEDLINE | ID: mdl-38597955

ABSTRACT

A nanomicrocapsule system was constructed through the polymerization of tannic acid (TA) and emulsifier OP-10 (OP-10), followed by the chelation of iron ions, to develop a safe and effective method for controlling Rhizoctonia solani in agriculture. The encapsulated active component is a rosin-based triazole derivative (RTD) previously synthesized by our research group (RTD@OP10-TA-Fe). The encapsulation efficiency of the nanomicrocapsules is 82.39%, with an effective compound loading capacity of 96.49%. Through the encapsulation of the RTD via nanomicrocapsules, we improved its water solubility, optimized its stability, and increased its adhesion to the leaf surface. Under acidic conditions (pH = 5.0), the release rate of nanomicrocapsules at 96 h is 96.31 ± 0.8%, which is 2.04 times higher than the release rate under normal conditions (pH = 7.0). Additionally, the results of in vitro and in vivo antifungal assays indicate that compared with the original compound, the nanomicrocapsules exhibit superior antifungal activity (EC50 values of RTD and RTD@OP10-TA-Fe are 1.237 and 0.860 mg/L, respectively). The results of field efficacy trials indicate that compared with RTD, RTD@OP10-TA-Fe exhibits a more prolonged period of effectiveness. Even after 3 weeks, the antifungal rate of RTD@OP10-TA-Fe remains at 40%, whereas RTD, owing to degradation, shows an antifungal rate of 11.11% during the same period. Furthermore, safety assessment results indicate that compared with the control, RTD@OP10-TA-Fe has almost no impact on the growth of rice seedlings and exhibits low toxicity to zebrafish. This study provides valuable insights into controlling R. solani and enhancing the compound performance.

8.
Adv Sci (Weinh) ; 11(24): e2308384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634607

ABSTRACT

Cell-specific transcriptional regulatory networks (TRNs) play vital roles in plant development and response to environmental stresses. However, traditional single-cell mono-omics techniques are unable to directly capture the relationships and dynamics between different layers of molecular information within the same cells. While advanced algorithm facilitates merging scRNA-seq and scATAC-seq datasets, accurate data integration remains a challenge, particularly when investigating cell-type-specific TRNs. By examining gene expression and chromatin accessibility simultaneously in 16,670 Arabidopsis root tip nuclei, the TRNs are reconstructed that govern root tip development under osmotic stress. In contrast to commonly used computational integration at cell-type level, 12,968 peak-to-gene linkage is captured at the bona fide single-cell level and construct TRNs at an unprecedented resolution. Furthermore, the unprecedented datasets allow to more accurately reconstruct the coordinated changes of gene expression and chromatin states during cellular state transition. During root tip development, chromatin accessibility of initial cells precedes gene expression, suggesting that changes in chromatin accessibility may prime cells for subsequent differentiation steps. Pseudo-time trajectory analysis reveal that osmotic stress can shift the functional differentiation of trichoblast. Candidate stress-related gene-linked cis-regulatory elements (gl-cCREs) as well as potential target genes are also identified, and uncovered large cellular heterogeneity under osmotic stress.


Subject(s)
Arabidopsis , Osmotic Pressure , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Gene Expression Regulation, Plant/genetics , Single-Cell Analysis/methods , Gene Regulatory Networks/genetics , Plant Roots/genetics , Plant Roots/growth & development , Meristem/genetics , Meristem/metabolism
9.
Poult Sci ; 103(1): 103231, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980764

ABSTRACT

The meat production of broilers is crucial to economic benefits of broiler industries, while the slaughter performance of broilers is directly determined by skeletal muscle development. Hence, the broiler breeding for growth traits shows a great importance. As a kind of small noncoding RNA, microRNA (miRNA) can regulate the expression of multiple genes and perform a wide range of regulation in organisms. Currently, more and more studies have confirmed that miRNAs are closely associated with skeletal muscle development of chickens. Based on our previous miR-seq analysis (accession number: PRJNA668199), miR-460b-5p was screened as one of the key miRNAs probably involved in the growth regulation of chickens. However, the regulatory effect of miR-460b-5p on the development of chicken skeletal muscles is still unclear. Therefore, miR-460b-5p was further used for functional validation at the cellular level in this study. The expression pattern of miR-460b-5p was investigated in proliferation and differentiation stages of chicken primary myoblasts. It was showed that the expression level of miR-460b-5p gradually decreased from the proliferation stage (GM 50%) to the lowest at 24 h of differentiation. As differentiation proceeded, miR-460b-5p expression increased significantly, reaching the highest and stabilizing at 72 h and 96 h of differentiation. Through mRNA quantitative analysis of proliferation marker genes, CCK-8 and Edu assays, miR-460b-5p was found to significantly facilitate the transition of myoblasts from G1 to S phase and promote chicken myoblast proliferation. mRNA and protein quantitative analysis of differentiation marker genes, as well as the indirect immunofluorescence results of myotubes, revealed that miR-460b-5p significantly stimulated myotube development and promote chicken myoblast differentiation. In addition, the target relationship was validated for miR-460b-5p according to the dual-luciferase reporter assay and mRNA quantitative analysis, which indicates that miR-460b-5p was able to regulate RBM19 expression by specifically binding to the 3' UTR of RBM19. In summary, miR-460b-5p has positive regulatory effects on the proliferation and differentiation of chicken myoblasts, and RBM19 is a target gene of miR-460b-5p.


Subject(s)
Chickens , MicroRNAs , Animals , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Myoblasts , 3' Untranslated Regions , Cell Differentiation , Muscle Development/genetics
10.
Food Res Int ; 173(Pt 2): 113414, 2023 11.
Article in English | MEDLINE | ID: mdl-37803746

ABSTRACT

The inhibitory effects of liquiritigenin, liquiritin and glycyrrhizic acid against the hazards during the preparation of thermal reaction beef flavoring were investigated using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Liquiritigenin(1.5 mM) inhibited Nε-carboxymethyl-L-lysine and Nε-carboxyethyl-L-lysine by up to 38.69 % and 61.27 %, respectively; 1.5 mM liquiritin inhibited 4-methylimidazole by up to 48.28 %; and 1.5 mM liquiritigenin and 1.0 mM liquiritin inhibited hydroxymethylfurfural by up to 61.20 % and 59.31 %, respectively. The results of the model system showed that the inhibitory effect of the 3 inhibitors could be extended to other thermal reaction flavoring systems. The 3 inhibitors can effectively block key intermediates in beef flavoring, and liquiritigenin can inhibit up to 22.97 % of glyoxal and 22.89 % of methylglyoxal. In addition, liquiritigenin and liquiritin can directly eliminate up to 25.87 % and 21.01 % of methylglyoxal by addition and other means. Free radicals in the simultaneous formation model system were measured using electron spin resonance (ESR), and the results showed that liquiritigenin, liquiritin and glycyrrhizic acid could scavenge free radicals in the system in a dose-dependent manner, with scavenging rates of up to 44.88-57.09 %. Therefore, the inhibitory effects of the 3 inhibitors can be attributed to the intermediate blocking and free radical scavenging pathways.


Subject(s)
Glycation End Products, Advanced , Glycyrrhizic Acid , Animals , Cattle , Glycyrrhizic Acid/pharmacology , Tandem Mass Spectrometry , Pyruvaldehyde , Lysine/analysis , Meat/analysis , Free Radicals
11.
Genes (Basel) ; 14(9)2023 09 05.
Article in English | MEDLINE | ID: mdl-37761904

ABSTRACT

Broiler skeletal muscle growth is significantly influenced by miRNAs. Our earlier research demonstrated that miR-24-3p significantly suppressed the proliferation of chicken myoblasts while promoting their differentiation. The purpose of this study is to investigate miR-24-3p potential target genes in chickens. We collected myoblasts of Jinghai yellow chicken and transfected four samples with mimics of miR-24-3p and another four samples with mimic NC (negative control) for RNA-seq. We obtained 54.34 Gb of raw data in total and 50.79 Gb of clean data remained after filtering. Moreover, 11,635 genes were found to be co-expressed in these two groups. The mimic vs. NC comparison group contained 189 DEGs in total, 119 of which were significantly up-regulated and 70 of which were significantly down-regulated. Important biological process (BP) terminology such as nuclear chromosomal segregation, reproduction, and nuclear division were discovered by GO enrichment analysis for DEGs in the mimic vs. NC comparison group. KEGG pathway analysis showed that focal adhesion, cytokine-cytokine receptor interaction, the TGF-ß signaling pathway, and the MAPK signaling pathway were enriched in the top 20. Variation site analysis illustrated the SNP (single nucleotide polymorphisms) and INDEL (insertion-deletion) in the tested samples. By comparing the target genes predicted by miRDB (MicroRNA target prediction database) and TargetScan with the 189 DEGs found by the transcriptome sequencing, we discovered two up-regulated DEGs (NEURL1 and IQSEC3) and two down-regulated DEGs (REEP1 and ST6GAL1). Finally, we carried out qPCR experiments on eight DEGs and discovered that the qPCR results matched the sequencing outcomes. These findings will aid in identifying potential miR-24-3p target genes in chicken skeletal muscle and offer some new directions for upcoming research on broiler breeding.


Subject(s)
MicroRNAs , Transcriptome , Animals , Transcriptome/genetics , Chickens/genetics , Chickens/metabolism , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , Myoblasts/metabolism
12.
Neural Netw ; 167: 706-714, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37729786

ABSTRACT

Adversarial training is considered one of the most effective methods to improve the adversarial robustness of deep neural networks. Despite the success, it still suffers from unsatisfactory performance and overfitting. Considering the intrinsic mechanism of adversarial training, recent studies adopt the idea of curriculum learning to alleviate overfitting. However, this also introduces new issues, that is, lacking the quantitative criterion for attacks' strength and catastrophic forgetting. To mitigate such issues, we propose the self-paced adversarial training (SPAT), which explicitly builds the learning process of adversarial training based on adversarial examples of the whole dataset. Specifically, our model is first trained with "easy" adversarial examples, and then is continuously enhanced by gradually adding "complex" adversarial examples. This way strengthens the ability to fit "complex" adversarial examples while holding in mind "easy" adversarial samples. To balance adversarial examples between classes, we determine the difficulty of the adversarial examples locally in each class. Notably, this learning paradigm can also be incorporated into other advanced methods for further boosting adversarial robustness. Experimental results show the effectiveness of our proposed model against various attacks on widely-used benchmarks. Especially, on CIFAR100, SPAT provides a boost of 1.7% (relatively 5.4%) in robust accuracy on the PGD10 attack and 3.9% (relatively 7.2%) in natural accuracy for AWP.


Subject(s)
Benchmarking , Learning , Neural Networks, Computer
13.
Anal Bioanal Chem ; 415(24): 5985-5996, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37505235

ABSTRACT

Glyphosate (Glyp) is an organophosphorus herbicide, and its abuse causes potential harm to the environment and human health. Thus, the development of simple and portable methods for rapid and visual detection of glyphosate is of great importance. Herein, we successfully developed a new fluorescent probe L with dansyl fluorophore as a fluorescent dye and tetrapeptide (Ala-Ser-Arg-His-NH2) as a recognition group. According to the design, L exhibited a specific fluorescence quenching response to Cu2+ and formed an L-Cu2+ ensemble with a molecular ratio of 2:1, demonstrating a limit of detection (LOD) as low as 12.04 nM. Interestingly, the L-Cu2+ ensemble as a relay response probe exhibited a specific fluorescence "off-on" response to glyphosate without interference from other pesticides and anions based on the strong complexation of glyphosate and Cu2+. The LOD of the L-Cu2+ ensemble for glyphosate was calculated as 12.59 nM. Additionally, the results of three recovery experiments with real samples showed that L has good practicability and accuracy in detecting glyphosate. Test strips were also fabricated to achieve facile detection of glyphosate to demonstrate the practical application potential of the L-Cu2+ ensemble. The L-Cu2+ ensemble was integrated with a smartphone for semi-quantification of glyphosate in a field environment under a 365 nm UV lamp.


Subject(s)
Fluorescent Dyes , Smartphone , Humans , Fluorescent Dyes/chemistry , Copper/chemistry , Spectrometry, Fluorescence/methods , Peptides/chemistry , Glyphosate
14.
Microsyst Nanoeng ; 9: 93, 2023.
Article in English | MEDLINE | ID: mdl-37484502

ABSTRACT

Flexible electrodes have demonstrated better biocompatibility than rigid electrodes in relieving tissue encapsulation and long-term recording. Nonhuman primates are closer to humans in their brains' structural and functional properties, thus making them more suitable than rodents as animal models for potential clinical usage. However, the application of flexible electrodes on nonhuman primates has rarely been reported. In the present study, a flexible multichannel electrode array for nonhuman primates was developed and implemented for extracellular recording in behaving monkeys. To minimize the window of durotomy for reducing possible risks, a guide-tube-compatible implantation solution was designed to deliver the flexible electrodes through the dura into the cortex. The proposed structure for inserting flexible electrodes was characterized ex vivo and validated in vivo. Furthermore, acute recording of multichannel flexible electrodes for the primates was performed. The results showed that the flexible electrodes and implantation method used in this study meet the needs of extracellular recording in nonhuman primates. Task-related neuronal activities with a high signal-to-noise ratio of spikes demonstrated that our whole device is currently a minimally invasive and clinically viable approach for extracellular recording.

15.
Animals (Basel) ; 13(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37174466

ABSTRACT

The kruppel-like factor (KLF) gene family is a group of transcription factors containing highly conserved zinc-finger motifs, which play a crucial role in cell proliferation and differentiation. Chicken has been widely used as a model animal for analyzing gene function, however, little is known about the function of the KLF gene family in chickens. In this study, we performed genome-wide studies of chicken KLF genes and analyzed their biological and expression characteristics. We identified 13 KLF genes from chickens. Our phylogenetic, motif, and conserved domain analyses indicate that the KLF gene family has remained conserved through evolution. Synteny analysis showed the collinear relationship among KLFs, which indicated that they had related biomolecular functions. Interaction network analysis revealed that KLFs worked with 20 genes in biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that KLF2 was involved in Apelin and Forkhead Box O (FOXO) signaling pathways. Moreover, qPCR showed that 13 KLF genes were expressed in the nine selected tissues and displayed various gene expression patterns in chickens. RNA-seq showed that KLF3 and KLF10 genes were differentially expressed in the normal and high-fat diet fed groups, and KLF4, KLF5, KLF6, KLF7, KLF9, KLF12, and KLF13 genes were differentially expressed between undifferentiated and differentiated chicken preadipocytes. Besides, RNA-seq also showed that KLF genes displayed different expression patterns in muscle at 11 and 16 embryonic days old, and in 1-day-old chickens. These results indicated that the KLF genes were involved in the development of muscle and fat in chickens. Our findings provide some valuable reference points for the subsequent study of the function of KLF genes.

16.
BMC Med Genomics ; 16(1): 97, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161408

ABSTRACT

BACKGROUND: circular RNAs (circRNAs) play a crucial role in many physiological and pathological processes including juvenile-onset systemic lupus erythematosus (JSLE). The aim of this study is to investigate the role of circRNA hsa_circ_0008945 in JSLE and evaluate its significance as diagnosing biomarker. METHODS: RT-qPCR was applied to detect the level of circ_0008945 in JSLE and controls. The Spearman correlation test assessed the correlation between circ_0008945 and clinical variables. The receiver operating characteristic (ROC) curve was calculated for evaluating the diagnostic value. Overexpression or knockdown of circ_0008945 in primary peripheral blood mononuclear cells (PBMCs) was performed to further examine its function in apoptosis. RESULTS: RT-qPCR revealed that there were significantly higher levels of hsa_circ_0008945 in PMBCs from JSLE patients (p < 0.001) compared to healthy controls. In addition, there were significant associations between hsa_circ_0008945 level and the level of C3, C4, anti-ds DNA, IgG, CRP and ESR (p < 0.05) but not associated with the level of Ig A and Ig M. ROC curve of the circ_0008945 showed that the AUC was 0.790 and it may potentially be used as a novel biomarker for the diagnosis of JSLE. The results showed that overexpression of circ-0008945 increased the apoptosis of PBMCs while knockdown of circ-0008945 by siRNA decreased the apoptosis of PBMCs, supporting that circ-0008945 promoted the apoptosis in PBMCs and contributed to the pathogenesis of JSLE. CONCLUSION: The role of circ_0008945 was first investigated in JSLE and proposed herein their possible contribution to the pathogenesis of JSLE. This study provides not only novel insight into the pathological mechanisms but also the potential value as a useful biomarker for JSLE.


Subject(s)
Leukocytes, Mononuclear , Lupus Erythematosus, Systemic , Humans , Apoptosis , Lupus Erythematosus, Systemic/genetics , RNA, Circular/genetics , RNA, Small Interfering
17.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36984991

ABSTRACT

Crystallization often occurs in the processing of amorphous alloys, causing the materials lose their excellent properties. The study adopts chemical mechanical polishing of amorphous alloys, presenting the effect of the rotational speed of the polishing turntable, size of abrasive, polishing pressure, and oxidant concentration. The Taguchi method is used to find the best processing parameters, and AFM is used to characterize the machined material surface. At the same time, XPS is used to detect the change of oxide film composition with the addition of oxidant. The results indicate the optimum process parameters: rotational speed of the polishing turntable is 75 r/min, polishing pressure is 28.3 kPa, the size of abrasive is 0.5 µm, and the size of abrasive is a significant factor affecting surface roughness Sa. In addition, as the size of abrasive increases, the material removal rate increases while the surface roughness Sa increases. At pH 10, with an abrasive particle size of 0.5 µm, as the H2O2 concentration increases, the MRR first rapidly decreases at 0.21 wt.% H2O2, and then gradually increases, while the Sa decreases. Furthermore, with the addition of oxidant, the main composition of the surface oxide film changes from oxide to hydroxide, and the contents of Zr4+ and Cu0/Cu1+ elements increase. The findings can provide a feasible chemical mechanical polishing process for zirconium-based amorphous alloys to obtain a satisfactory polishing effect.

18.
Front Public Health ; 11: 1115128, 2023.
Article in English | MEDLINE | ID: mdl-36926173

ABSTRACT

With the acceleration of the pace of urban life and the development of information technology, the takeout industry has emerged as the times require, which obtains intermediate costs by distributing goods to consumers. People pay more and more attention to public health, which requires takeout workers to drive as fast as possible to ensure the quality and safety of goods, but it also makes takeout workers suffer from various occupational injuries, such as car accidents, stomach diseases caused by eating disorders and long-term psychological pressure. This paper optimized the employment protection of takeout workers in combination with their professional characteristics. This paper used the analytic hierarchy process (AHP) to analyze the indicators that can evaluate the optimization effect of employment protection for takeout workers, and compared the occupation of takeout workers before and after employment protection. The experimental results showed that in Meituan takeout, the rationality of the average delivery management system before and after the optimization of employment protection was 47.2 and 64.4%, respectively; in ELEME takeout, the rationality of the average takeout distribution management system before and after the optimization of employment protection was 55.0% and 69.8%, respectively. Therefore, in the context of public health, the implementation of social security, employment relationship and optimization of service evaluation mechanism for outbound sales personnel can effectively improve the rationality of the delivery management system.


Subject(s)
Occupational Injuries , Humans , Public Health , Employment , Industry , Occupations
19.
Mol Divers ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36933104

ABSTRACT

A variety of myricetin derivatives containing thioether quinoline moiety were designed and synthesized. Their structures of title compounds were determined by 1H NMR, 13C NMR, 19F NMR, and HRMS. Single-crystal X-ray diffraction experiments were carried out with B4. Antiviral activity indicated that some of the target compounds exhibited remarkable anti-tobacco mosaic virus (TMV) activity. In particular, compound B6 possessed significant activity. The half maximal effective concentration (EC50) value of the curative activity of compound B6 was 169.0 µg/mL, which was superior to the control agent ningnanmycin (227.2 µg/mL). Meanwhile, the EC50 value of the protective activity of compound B6 was 86.5 µg/mL, which was better than ningnanmycin (179.2 µg/mL). Microscale thermophoresis (MST) indicated that compound B6 had a strong binding capability to the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) value of 0.013 µmol/L, which was superior to that of myricitrin (61.447 µmol/L) and ningnanmycin (3.215 µmol/L). And the molecular docking studies were consistent with the experimental results. Therefore, these novel myricetin derivatives containing thioether quinoline moiety could become potential alternative templates for novel antiviral agents.

20.
Pest Manag Sci ; 79(1): 274-283, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36148624

ABSTRACT

BACKGROUND: With the long-term use of traditional bactericides and antiviral agents, drug resistance has become increasingly prominent, resulting in impaired crop growth and yields. Based on this, the introduction of small molecular active groups into natural products has become the direction of research for green pesticides. RESULTS: In this study, novel 1,3,4-oxadiazole sulfonate/carboxylate flavonoid derivatives were explored. Among them, D4 exhibited good inhibitory effects on plant bacteria. It is worth mentioning that D4 (15 µg ml-1 ) exhibited an excellent median effective concentration (EC50 ) value against Xanthomonas oryzae pv. oryzae (Xoo), which was better than bismerthiazol (73 µg ml-1 ) and thiodiazole copper (100 µg ml-1 ). The EC50 for D4 was much lower than the two positive controls (bismerthiazol, thiodiazole copper), making D4 more potent in this assay of bacterial growth inhibition. In addition, mechanism research using scanning electron microscopy revealed that D4 could cause deformation or rupture of the cell membranes of Xoo and Pseudomonas syringae pv. actinidiae. Moreover, D4 exhibited the best EC50 for in vivo curative (132 µg ml-1 ) and protective (101 µg ml-1 ) activities against tobacco mosaic virus, which were more effective than ningnanmycin. Microscale thermophoresis data suggested that D4 [dissociation constant (Kd ) = 0.038 ± 0.011 µmol L-1 ] exhibited a stronger binding capacity than the control agent ningnanmycin (Kd = 4.707 ± 2.176 µmol L-1 ). CONCLUSION: The biological activity data and mode of action demonstrated that D4 had the best antibacterial and antiviral effects. Compound D4 discovered in the current work may be a very promising agricultural drug. © 2022 Society of Chemical Industry.


Subject(s)
Copper , Flavonoids , Flavonoids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL