Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 191: 110054, 2020 12.
Article in English | MEDLINE | ID: mdl-32827520

ABSTRACT

In this paper, a comparative study on removal of the emerging pollutant phenazone (PNZ) by two treatment processes UVA/Fe(II)/persulfate (PS) and UVA/Fe(II)/peroxymonosulfate (PMS) was conducted. The two processes showed high efficiency in PNZ degradation, followed by a reasonable mineralization. The treatment system with PMS was found to be more efficient for PNZ degradation than that with PS due to the larger amounts of radicals generated. While the treatment process UVA/Fe(II)/PS showed higher ΔTOC/ΔSMX (TOC removal per unit of PNZ decay) than UVA/Fe(II)/PMS process. The sulfate and hydroxyl radicals played dominant roles in PNZ degradation in the UVA/Fe(II)/PS and UVA/Fe(II)/PMS process, respectively. Six and seven intermediates during PNZ degradation by UVA/Fe(II)/PS and UVA/Fe(II)/PMS process were detected, respectively. Among the detected intermediates, six of them are found for the first time. It takes shorter time for toxicity elimination by UVA/Fe(II)/PS process than UVA/Fe(II)/PMS, possibly due to the lower Kow values of hydroxylated products. The results demonstrate that UVA/Fe(II)/PMS process is more efficient in PNZ degradation, while UVA/Fe(II)/PS is more efficient in detoxification of PNZ. The two sulfate radicals based processes have good potentials in degradation, mineralization and detoxification of the emerging contaminants such as PNZ.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Antipyrine , Hydroxyl Radical , Oxidation-Reduction , Sulfates
2.
Water Res ; 112: 167-175, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28160696

ABSTRACT

The toxicity of antipyrine (AP) in the photodegradation using UV/CoFe2O4/TiO2 was investigated by analyzing the characteristic of the catalyst, the effect of parameters (light source wavelength, catalyst dose, pH and initial AP concentration), the reaction mechanism (the organic intermediates, TOC reduction and inorganic ions release) and the newly proposed low-dosage-high-effective radical reaction approach. The catalyst shows the optimal removal efficiency under the conditions of wavelength at 350 nm, the catalyst dose at 0.5 g/L, and pH value at 5.5. Ten organic intermediates were identified, and five of them were newly reported in AP treatment process. Hydroxylation, demethylation and the cleavage of the pentacyclic ring were included in the decomposition pathways. The ring opening was certified by the 45% TOC reduction and 60% ammonia release during the process. The parent compound AP and its degradation products show positive effects on the growth of the algae. However, acute toxicity of AP was detected on brine shrimps Artemia salina. The toxicity was eliminated gradually with the decomposition of AP and the generation of the byproducts. The results indicate that the photocatalysis process is effective in AP removal, TOC reduction and toxicity elimination.


Subject(s)
Antipyrine , Plankton , Catalysis , Photolysis , Titanium/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...