Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Planta ; 259(5): 120, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607398

ABSTRACT

MAIN CONCLUSION: This study reveals miRNA indirect regulation of C4 genes in sugarcane through transcription factors, highlighting potential key regulators like SsHAM3a. C4 photosynthesis is crucial for the high productivity and biomass of sugarcane, however, the miRNA regulation of C4 genes in sugarcane remains elusive. We have identified 384 miRNAs along the leaf gradients, including 293 known miRNAs and 91 novel miRNAs. Among these, 86 unique miRNAs exhibited differential expression patterns, and we identified 3511 potential expressed targets of these differentially expressed miRNAs (DEmiRNAs). Analyses using Pearson correlation coefficient (PCC) and Gene Ontology (GO) enrichment revealed that targets of miRNAs with positive correlations are integral to chlorophyll-related photosynthetic processes. In contrast, negatively correlated pairs are primarily associated with metabolic functions. It is worth noting that no C4 genes were predicted as targets of DEmiRNAs. Our application of weighted gene co-expression network analysis (WGCNA) led to a gene regulatory network (GRN) suggesting miRNAs might indirectly regulate C4 genes via transcription factors (TFs). The GRAS TF SsHAM3a emerged as a potential regulator of C4 genes, targeted by miR171y and miR171am, and exhibiting a negative correlation with miRNA expression along the leaf gradient. This study sheds light on the complex involvement of miRNAs in regulating C4 genes, offering a foundation for future research into enhancing sugarcane's photosynthetic efficiency.


Subject(s)
MicroRNAs , Saccharum , Transcriptome/genetics , Saccharum/genetics , Transcription Factors/genetics , Gene Regulatory Networks , MicroRNAs/genetics
2.
Diagnostics (Basel) ; 14(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337783

ABSTRACT

Retinal vessels have been good predictive and prognostic imaging biomarkers for systemic or eye diseases. Numerous studies have shown that the two retinal vein occlusion entities may correlate with cardiovascular and cerebrovascular events or primary open-angle glaucoma. This study aims to investigate if there is a disparity in the correlations between branch RVO (BRVO) and central RVO (CRVO) with systemic disorders or POAG, thus explaining the pathogenic difference between BRVO and CRVO. This retrospective case-control study enrolled 59 RVO subjects (118 eyes), including 25 CRVO and 34 BRVO subjects, who received routine eye and brain MRI examinations. The geometric characteristics of the caliber of the retinal and cerebral blood vessels and the optic nerve subarachnoid space width (ONSASW) were measured. Multivariable logistic regression analysis showed that ONSASW at 3 mm behind the globe (p = 0.044) and the relative retinal venular calibers (p = 0.031) were independent risk factors for the CRVO-affected eyes group in comparison with the BRVO-affected eyes group after adjusting for age, duration of hypertension, BMI, and IOP. In the CRVO-affected eyes, narrower relative retinal arteriolar calibers (p = 0.041) and wider relative venular calibers (p = 0.011) were independent risk factors compared with the CRVO-contralateral normal eyes when adjusting for IOP. We concluded that BRVO may be more associated with cerebrovascular diseases, and CRVO may be correlated with primary angle glaucoma. The geometric characteristics difference between the retinal and cerebrovascular may explain the pathological difference between CRVO and BRVO.

3.
Front Endocrinol (Lausanne) ; 14: 1215218, 2023.
Article in English | MEDLINE | ID: mdl-37745714

ABSTRACT

Background: Interaction between retinal vascular endothelial cells and neurons plays a critical role in the pathogenesis of diabetic retinopathy (DR). This study aims to compare an in vitro model over a monoculture model to simulate the neurovascular coupling under the hyperglycemic microenvironment of diabetes. Methods: Rat retinal vascular endothelial cells (RRMECs) and ganglion cells (RGCs) were seeded mono- or co-cultured in a normal (NG, 5.5 mM) and high (HG, 75 mM) glucose concentrations culture medium. Cell viability was detected by the cell counting kit-8 (CCK-8) assay. The ability of migration and lumen formation of RRMECs were determined by scratch wound, transwell migration, and lumen formation assays. The apoptosis index of cells was calculated and detected by propidium iodide (PI)/Hoechst staining. Quantitative and morphological analysis of RGCs was performed through the labeling of RGCs by brain-specific homeobox/POU domain protein 3A (BRN3A) and anti-beta-III tubulin (TUJ1). The gene and protein expression levels of occludin (OCLN) and zonula occludens-1 (ZO-1) were evaluated by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results: The viability, migration, and lumen formation abilities of RRMECs in the HG group significantly increased (P<0.05) in both mono- and co-culture models. Migration and lumen formation abilities of RRMECs in the co-culture with HG were lower than that in the monoculture group (P<0.05). The viability of RGCs cells with HG significantly decreased in both mono- and co-culture models (Pmono<0.001, Pco<0.001), the apoptosis index of RGCs in the co-culture with HG was higher than that in the monoculture (P=0.010). The protein and gene expression of OCLN, and ZO-1 in RRMECs significantly decreased with HG culture medium in both culture models (P<0.05). In the HG group, the protein and gene expression level of the ZO-1 and OCLN of RRMECs significantly decreased in the co-culture model than that in the monoculture model (P<0.05). Conclusion: Compared with mono cell culture, the established co-culture in vitro system for diabetic neurovascular dysfunction can better stimulate the micro-environment of the retinal neurovascular unit.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Animals , Rats , Coculture Techniques , Endothelial Cells , Retina , Cell Culture Techniques , Culture Media , DNA-Binding Proteins
4.
Eye (Lond) ; 37(7): 1383-1389, 2023 05.
Article in English | MEDLINE | ID: mdl-35739242

ABSTRACT

BACKGROUND: To test the hypothesis that elevated plasma levels of homocysteine (Hcy) and lipoprotein (a) (LPA) contribute to diabetic retinopathy (DR) associated with dysregulated lipid profile, dyslipidaemia, and kidney function. METHODS: A total of 83 patients with type 2 diabetes mellitus (T2DM) were enrolled in this prospective case-control study. Patients were categorized into those with no DR (DM), non-proliferative DR (NPDR), and proliferative DR (PDR). Age and sex-matched individuals with no diabetes were included in the control group. Biochemical tests, including fasting blood glucose (FBG), glycated hemoglobin (HbA1c), Hcy, LPA, lipid profile, and urine microalbumin (UMA), were evaluated. RESULTS: Hcy was negatively correlated with high-density lipoprotein-cholesterol (HDL-C) (p < 0.05), but positively correlated with [total cholesterol (TC)-HDL-C)/HDL-C] (p < 0.05), low-density lipoprotein cholesterol (LDL-C)/HDL-C (p < 0.05), and UMA (p < 0.05). Traditional risk factors, Hcy, arteriosclerosis-associated plasma indices, and UMA, resulted as the independent risk factors for the occurrence of DM and DR. After controlling for age, sex, duration of DM, and FBG, a multiple ordinal logistic regression model showed that LPA [OR = 2.90, 95% confidence interval (95% CI) 1.16-7.23, p = 0.023)], LDL-C (OR = 4.28, 95% CI 1.24-14.79, p = 0.021), and (TC-HDL-C)/HDL-C (OR = 1.92, 95% CI 1.05-3.53, p = 0.035) were risk factors for DM and DR. CONCLUSIONS: Hcy and LPA contributed to DM and DR. Hcy was positively correlated with kidney dysfunction and the ratios of lipid profiles, and negatively with HDL-C, LPA, LDL-C, and (TC-HDL-C)/HDL-C resulted as predictors of the occurrence of DM and severity of DR.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Humans , Diabetes Mellitus, Type 2/complications , Cholesterol, LDL , Case-Control Studies , Diabetic Retinopathy/complications , Homocysteine , Cholesterol, HDL , Kidney
5.
Educ Inf Technol (Dordr) ; 28(4): 4429-4452, 2023.
Article in English | MEDLINE | ID: mdl-36277511

ABSTRACT

Engagement is positively correlated with many educational outcomes. However, engaging learners in online learning is often challenging. In this study, a conceptual framework comprising five interrelated factors (instructors, learners, content, technology, and environments) was proposed. The purpose of the study was to explore how learners could be engaged by following the conceptual framework in synchronous online learning. Fifty-five adult learners took part in the study. Specific strategies were applied in four classes. A survey with 38 five-point Likert scale items and an open-ended question was administered. Quantitative and qualitative data were collected and analysed. Results showed that instructors, learners, and content were the core factors affecting learners' engagement. Comparatively, the learners' engagement was less affected by the factors of technology and environments. Results further showed that useful strategies to engage learners included providing opportunities for instructors and peers to interact frequently; having relevant content that could apply to practice; involving interactive activities like group discussions and peer feedback; and having informal conversations with individual learners. This study suggests that future studies can investigate facilitating synchronous online discussions, establishing social connectedness, and using technology to monitor learners' engagement automatically.

6.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430332

ABSTRACT

Previous studies have indicated that Brca1 (Breast cancer suppressor gene 1) plays an important role in neural development and degenerative diseases. However, the bioactivity and regulatory mechanism of Brca1 expression in retinal neurocytes remain unclear. In the present study, our data indicated that Brca1 maintains the state of neuronal precursor cells. Brca1 silencing induces differentiation in 661W cells. Nestin, a marker of precursor cells, was significantly decreased in parallel with Brca1 silencing in 661W cells, whereas Map2 (Microtubule associated protein 2), a marker of differentiated neurons, was significantly increased. Neurite outgrowth was increased by ~4.0-fold in Brca1-silenced cells. Moreover, DNA affinity purification assays and ChIP assays demonstrated that Gata3 (GATA binding protein 3) regulates Brca1 transcription in 661W cells. Silencing or overexpressing Gata3 could significantly regulate the expression of Brca1 and affect its promoter inducibility. Furthermore, the expression of Gata3 generally occurred in parallel with that of Brca1 in developing mouse retinas. Both Gata3 and Brca1 are expressed in the neonatal mouse retina but are developmentally silenced with age. Exogenous Gata3 significantly inhibited neural activity by decreasing synaptophysin and neurite outgrowth. Thus, this study demonstrated that Brca1 is transcriptionally regulated by Gata3. Brca1/Gata3 silencing is involved in neuronal differentiation and maturation.


Subject(s)
GATA3 Transcription Factor , Retinal Neurons , Animals , Mice , Cell Differentiation/genetics , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Neuronal Outgrowth , Promoter Regions, Genetic , Retinal Neurons/metabolism
7.
Front Endocrinol (Lausanne) ; 13: 915575, 2022.
Article in English | MEDLINE | ID: mdl-35937834

ABSTRACT

Objective: Apolipoproteins are amphipathic molecules and the major components of plasma lipoproteins. This study aims to investigate the effects of dysregulated apolipoprotein (apo) profiles and their ratios on type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR) further to test the hypothesis that altered serum level of apolipoproteins is strong biomarkers for DR. Research Design and Methods: This case-control study consists of 157 patients with T2DM including DM without DR, non-proliferative DR (NPDR), and proliferative DR (PDR). Fifty-eight age- and sex-matched healthy subjects were enrolled as normal controls. Blood biochemistry profile including serum levels of glucose, glycated hemoglobin (HbA1c), lipid profile [total cholesterol (TC), Triglycerides (TG), high and low-density lipoprotein (HDL-C and LDL-C)] was estimated. Apolipoproteins (apos, A-I, A-II, B, C-II, C-III, and E) was evaluated by protein chips (Luminex technology). Apolipoprotein ratios and arteriosclerosis-associated plasma indices were calculated. The Kruskal-Wallis test, independent sample t-test or Mann-Whitney U test, and multivariate regression analysis were performed to investigate the association of serum lipid biomarkers and the DR severity. Results: Serum level of apoA-I was negatively correlated with TC-(HDL-C)/HDL-C (p < 0.001), fasting glucose (p < 0.001), HbA1c (p < 0.001), and (p<0.001), while apoE, apoC-II/apoC-III, apoA-II/apoA-I were positively correlated with above traditional biomarkers (p < 0.001). Single variable logistic analysis results showed that body mass index (BMI) (p = 0.023), DM duration (p < 0.001), apoE (p < 0.001), apoC-II/apo C-III (p < 0.001), apoE/apoC-II (p < 0.001), atherogenic index (p = 0.013), fasting glucose (p < 0.001), HbA1c (p < 0.001), LPA (p = 0.001), and LDL-C/HDL-C (p = 0.031) were risk factors for the occurrence and severity of DR. Multivariate logistic regression mode showed that apoC-II/apoC-III and apoB/non-HDL-C (p < 0.001) as well as apoE/apoC-II (p = 0.001) were the independent risk factors for the occurrence and severity of DR-apopA-I and apoA-II are protective factors for DR-after controlling for the duration of DM, HbA1c, fasting glucose, and LPA. Conclusions: apoE, apoC-II/apoC-III, apoE/apoC-II, and apoB/non-HDL-C could be used as novel biomarkers for occurrence and severity of DR, whereas apoA-I and apoA-II resulted as protective factors for DR.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Apolipoprotein A-I , Apolipoprotein A-II , Apolipoprotein C-III , Apolipoproteins , Apolipoproteins B , Apolipoproteins E , Biomarkers , Case-Control Studies , Cholesterol, LDL , Diabetes Mellitus, Type 2/complications , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/etiology , Glucose , Glycated Hemoglobin , Humans
8.
Commun Biol ; 5(1): 761, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902771

ABSTRACT

Temperature has a large influence on insect abundances, thus under climate change, identifying major drivers affecting pest insect populations is critical to world food security and agricultural ecosystem health. Here, we conducted a meta-analysis with data obtained from 120 studies across China and Europe from 1970 to 2017 to reveal how climate and agricultural practices affect populations of wheat aphids. Here we showed that aphid loads on wheat had distinct patterns between these two regions, with a significant increase in China but a decrease in Europe over this time period. Although temperature increased over this period in both regions, we found no evidence showing climate warming affected aphid loads. Rather, differences in pesticide use, fertilization, land use, and natural enemies between China and Europe may be key factors accounting for differences in aphid pest populations. These long-term data suggest that agricultural practices impact wheat aphid loads more than climate warming.


Subject(s)
Aphids , Agriculture , Animals , Climate Change , Ecosystem , Temperature
9.
Cancer Cell Int ; 22(1): 156, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35439996

ABSTRACT

The glycoprotein alpha-1-antichymotrypsin (AACT), a serine protease inhibitor, is mainly synthesized in the liver and then secreted into the blood and is involved in the acute phase response, inflammation, and proteolysis. The dysregulation of AACT and its glycosylation levels are associated with tumor progression and recurrence, and could be used as a biomarker for tumor monitoring. In this review, we summarized the expression level, glycosylation modification, and biological characteristics of AACT during inflammation, neurodegenerative or other elderly diseases, and tumorigenesis, as well as, focused on the biological roles of AACT in cancer. The aberrant expression of AACT in cancer might be due to genetic alterations and/or immune by bioinformatics analysis. Moreover, AACT may serve as a diagnostic or prognostic biomarker or therapeutic target in tumors. Furthermore, we found that the expression of AACT was associated with the overall survival of patients with human cancers. Decreased AACT expression was associated with poor survival in patients with liver cancer, increased AACT expression was associated with shorter survival in patients with pancreatic cancer, and decreased AACT expression was associated with shorter survival in patients with early lung cancer. The review confirmed the key roles of AACT in tumorigenesis, suggesting that the glycoprotein AACT may serve as a biomarker for tumor diagnosis and prognosis, and could be a potential therapeutic target for human diseases.

10.
Int J Mol Sci ; 23(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35269648

ABSTRACT

GATA binding protein 3 (Gata3), a zinc-finger transcription factor, plays an important role in neural development. However, its expression and bioactivity in the retina remain unclear. In the present study, our data indicated that Gata3 maintains the precursor state of 661W cells, and Gata3 silencing induces cell differentiation. The expression of Nestin, a marker of precursor cells, was significantly decreased in parallel, whereas the expression of Map2, a marker of differentiated neurons, was significantly increased following the decrease in Gata3. Neurite outgrowth was increased by 2.78-fold in Gata3-silenced cells. Moreover, Gata3 expression generally paralleled that of Nestin in developing mouse retinas. Both Gata3 and Nestin were expressed in the retina at postnatal day 1 and silenced in the adult mouse retina. Exogenous Gata3 significantly inhibited the neural activity of primary retinal neurocytes (postnatal day 1) by decreasing synaptophysin levels, neurite outgrowth, and cell viability. Furthermore, in vivo, exogenous Gata3 significantly induced apoptosis and the contraction of retinal outlay filaments and decreased the a- and b-waves in adult mouse intravitreal injected with AAV-Re-Gata3-T2A-GFP. Thus, Gata3 silencing promotes neuronal differentiation and neurite outgrowth. Its abnormal expression impedes neural activity in adult retinal neurocytes. This study provides new insights into Gata3 bioactivity in retinal neurocytes.


Subject(s)
Neurons , Retina , Animals , Cell Differentiation/genetics , Cell Survival , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Mice , Nestin/genetics , Nestin/metabolism , Neuronal Outgrowth/physiology , Retina/metabolism
11.
Front Public Health ; 10: 1040319, 2022.
Article in English | MEDLINE | ID: mdl-36733289

ABSTRACT

Purpose: To investigate the mechanisms underlying the correlations between diabetic retinopathy (DR) and diabetic nephropathy (DKD) and examine whether circulating cytokines and dyslipidemia contribute to both DR and DKD in patients with 2 diabetes mellitus (T2DM). Methods: A total of 122 patients with T2DM were enrolled and categorized into the DM group (without no DR and DKD), DR group [non-proliferative DR (NPDR), and proliferative DR (PDR)] with no DKD), DR complicated with DKD groups (DR+DKD group). The biochemical profile, including fasting blood glucose (FBG), glycated hemoglobin (HbA1c), and lipid profile were estimated, and plasma inflammatory and angiogenic cytokines [monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF)-A, C, D, and placental growth factor (PlGF)] were analyzed by protein microarrays. The atherogenic plasma index (API) was defined as low-density lipoprotein cholesterol (LDL-C)/high-density lipoprotein-cholesterol (HDL-C); atherogenic index (AI) was calculated as [(total cholesterol (TC) -HDL-C)/HDL-C], and atherogenic index of plasma (AIP) was defined as log (TG/HDL-C). Results: By multivariable disordered regression analysis, after controlling for duration of DM and hypertension, LDL-C (p = 0.019) and VEGF-D (p = 0.029) resulted as independent risk factors for DR. Albumin-to-creatinine ratio (uACR) (p = 0.003) was an independent risk factor for DR with DKD. In DR, NPDR, and PDR groups, grades of A1, A2, and A3 of albuminuria increased with the severity of DR. In A1, A2, and A3 grade groups, the severity of DR (DM, NPDR, and PDR) increased with higher albuminuria grades. Kendall's tau-b correlation coefficient analysis revealed that FBG (p = 0.019), circulating level of PlGF (p = 0.002), and VEGF-D (p = 0.008) were significantly positively correlated with the grades of uACR (p < 0.001), and uACR grades were significantly correlated with DR severity (p < 0.001). Conclusions: The occurrence and severity of DR are closely correlated with kidney dysfunction. Among the three kidney functional parameters, uACR resulted as the better indicator of DR severity and progression than glomerular filtration (eGFR) and serum creatinine (Scr). Impaired FBG was associated with microalbuminuria, emphasizing that well-controlled FBG is important for both DR and DKD. The link between diabetic retinal and renal microvasculopathy was associated with dyslipidemia and upregulated circulating level of angiogenic cytokines.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Dyslipidemias , Humans , Female , Cytokines , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor D , Diabetes Mellitus, Type 2/complications , Albuminuria/complications , Cholesterol, LDL , Placenta Growth Factor , Kidney , Interleukin-6
12.
Front Med (Lausanne) ; 8: 779413, 2021.
Article in English | MEDLINE | ID: mdl-34904074

ABSTRACT

Purpose: This study aims to explore the correlations of arteriosclerosis-associated plasma indices with various severity levels of diabetic retinopathy (DR) and to test the hypothesis that elevated circulating level of known angiogenic cytokines induced by hyperglycemia is associated with dyslipidemia on DR. Methods: This cross-sectional study consists of 131 patients with type 2 diabetes. The patients were categorized based on their DR status into those with no DR (diabetes mellitus, DM), non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR) groups. The biochemical profile including fasting glucose, glycated hemoglobin (HbA1c), lipid profile were estimated, plasma angiogenic cytokines (vascular endothelial growth factor, VEGF-A, -C, -D) and placental growth factor (PlGF) were analyzed by protein microarrays. The atherogenic plasma index (API) was defined as low-density lipoprotein cholesterol/high-density lipoprotein cholesterol (LDL-C/HDL-C); atherogenic index (AI) was calculated as (TC-(HDL-C))/HDL-C and atherogenic index of plasma (AIP) was defined as log (TG/HDL-C). Results: No significant differences were detected in the duration of hypertension, age, and gender between the three groups. Serum TC and LDL-C, AI, and API in the NPDR group and PDR group were significantly higher than those in the DM group. The circulating level of PlGF, VEGF-A, and VEGF-C were significantly correlated with the severity of DR. VEGF-D is a risk factor independent of API (Z = -2.61, P = 0.009) and AI (Z = -2.40, P = 0.016). Multivariate logistic regression showed that AI and API are strong risk factors for the occurrence and severity of DR. Associated with AI and API, VEGF-D and PlGF contribute to DR: VEGF-D [AI: P = 0.038, odd ratio (OR) = 1.38; VEGF-D: P = 0.002, OR = 1.00. API: P = 0.027, OR = 1.56, VEGF-D:P = 0.002, OR = 1.00] and PlGF [AI: P = 0.021, OR = 1.43; VEGF-D: P = 0.004, OR = 1.50. API: P = 0.011, OR = 1.66; VEGF-D: P = 0.005, OR = 1.49]. Conclusions: Total cholesterol (TC) and LDL-C are risk factors for presence of any DR. Atherogenic index and API are novel and better predictive indicators for the occurrence and severity of DR in comparion with the traditional lipid profiles. Abnormal lipid metabolism are associated with the upregulation of circulating cytokines that are linked to the severity of DR.

13.
Front Med (Lausanne) ; 8: 778283, 2021.
Article in English | MEDLINE | ID: mdl-34957152

ABSTRACT

Purpose: To provide clinical evidence of the associations between retinal neuronal degeneration and microvasculopathy in diabetic retinopathy (DR). Methods: This case-control study included 76 patients (76 eyes) with type 2 diabetes mellitus (DM), and refraction error between -3.0 and +3.0 D. The eyes were assigned into DM (without DR), non-proliferative DR (NPDR), and proliferative DR (PDR) groups. Age-, sex-, and refractive error-matched normal subjects were enrolled as controls. The mean retinal thickness (mRT), the relative mean thickness of the retinal nerve fiber layer (rmtRNFL, mtRNFL/mRT), ganglion cell layer (rmtGCL), ganglion cell complex (rmtGCC) layer, foveal avascular zone area (FAZa), FAZ perimeter (FAZp), FAZ circularity index (FAZ-CI), and vessel density (VD) in superficial capillary plexus (SCP) and deep capillary plexus (DCP) were assessed by swept-source optical coherence tomography (OCT) and OCT angiography (OCTA). Group comparison and Spearman's partial correlation coefficient analysis were applied to evaluate the correlation between these morphological parameters. Results: rmtRNFL, FAZa, and FAZp in SCP and DCP increased with the DR severity (p rmtRNFL < 0.001; p FAZa, SCP = 0.001; p FAZa , DCP = 0.005; p FAZp , SCP < 0.001; p FAZp , DCP < 0.001). The rmtGCL, FAZ-CI in SCP and DCP, and VD in DCP decreased with the DR severity (p rmtGCL = 0.002, p FAZ-CI , SCP = 0.002; p FAZ-CI, DCP < 0.001, p VD , DCP < 0.001). After controlling age, sex, duration of diabetes, and hypertension, the rmtRNFL, FAZa in SCP and DCP, and FAZp in SCP and DCP were correlated with the severity of DR (p < 0.05), while VD in SCP and DCP, FAZ-CI, and rmtGCL were negatively correlated with the severity of DR (p < 0.05). The rmtGCL was negatively correlated with the FAZa in SCP (r = -0.34, p = 0.002) and DCP (r = -0.23, p = 0.033), and FAZp in SCP (r = -0.37, p = 0.001) and DCP (r = -0.32, p = 0.003), but positively correlated with VD in SCP (r = 0.26, p = 0.016), VD in DCP (r = 0.28, p = 0.012), and FAZ-CI in DCP (r = 0.31, p = 0.006). Conclusions: rmtRNFL, FAZ-CI in SCP and DCP, and FAZp in SCP are strong predictors of the severity of DR. The ganglion cell body loss is highly correlated with increased FAZp and FAZa, decreased FAZ-CI, and reduced VD with the severity of DR.

14.
J Diabetes Res ; 2021: 8746114, 2021.
Article in English | MEDLINE | ID: mdl-34746320

ABSTRACT

Cholesterol esters, synthesized from cholesterol with long-chain fatty acids, are essential components of plasma lipoproteins and cell membranes that participate in various metabolic processes in the body. Cholesterol can be excreted through the cholesterol reverse transport (RCT) pathway when excessive cholesterol is produced in the extrahepatic cells, which is regulated by the liver X receptor (LXR) and its downstream regulators ATP-binding cassette subfamily A member 1 (ABCA1) and ATP-binding cassette subfamily G member 1 (ABCG1) genes. Abnormal cholesterol metabolism is closely associated with the development of diabetic retinopathy (DR). However, the precise underlying mechanism of the RCT pathway in the pathogenesis of DR is still not fully understood. This review focused on cholesterol metabolism, with a particular emphasis on the RCT pathway and its correlation with the development of DR. Particular attention has been paid to the key regulators of the RCT pathway: LXR, ABCA1, and ABCG1 genes and their potential therapeutic targets in the management of DR.


Subject(s)
Carrier Proteins/metabolism , Cholesterol/metabolism , Diabetic Retinopathy/blood , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Cholesterol/analysis , Cholesterol/blood , Diabetic Retinopathy/epidemiology , Humans , Lipid Metabolism/genetics , Liver X Receptors/metabolism
15.
J Diabetes Res ; 2021: 9765119, 2021.
Article in English | MEDLINE | ID: mdl-34805414

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a leading cause of blindness in working-age populations. Proper in vitro DR models are crucial for exploring pathophysiology and identifying novel therapeutic targets. This study establishes a rational in vitro diabetic retinal neuronal-endothelial dysfunction model and a comprehensive downstream validation system. METHODS: Human retinal vascular endothelial cells (HRMECs) and retinal ganglion cells (RGCs) were treated with different glucose concentrations with mannitol as matched osmotic controls. Cell proliferation and viability were evaluated by the Cell Counting Kit-8. Cell migration was measured using a transwell migration assay. Cell sprouting was assessed by a tube formation assay. The VEGF expression was assessed by ELISA. RGCs were labeled by neurons and RGC markers TUJ1 and BRN3A for quantitative and morphological analysis. Apoptosis was detected using PI/Hoechst staining and TUNEL assay and quantified by ImageJ. RESULTS: Cell proliferation and migration in HRMECs were significantly higher in the 25 mM glucose-treated group (p < 0.001) but lower in the 50 mM and 100 mM groups (p < 0.001). The permeability and the apoptotic index in HRMECs were statistically higher in the 25 mM, 50 mM, and 100 mM groups (p < 0.05). The tube formation assay found that all the parameters were significantly higher in the 25 mM and 50 mM groups (p < 0.001) concomitant with the elevated VEGFA expression in HRMECs (p = 0.016). Cell viability was significantly lower in the 50 mM, 100 mM, and 150 mM groups in RGCs (p 50mM = 0.013, p 100mM = 0.019, and p 150mM = 0.002). Apoptosis was significantly elevated, but the proportion of RGCs with neurite extension was significantly lower in the 50 mM, 100 mM, and 150 mM groups (p 50mM < 0.001, p 100mM < 0.001, and p 150mM < 0.001). CONCLUSIONS: We have optimized glucose concentrations to model diabetic retinal endothelial (25-50 mM) or neuronal (50-100 mM) dysfunction in vitro, which have a wide range of downstream applications.


Subject(s)
Diabetic Retinopathy/pathology , Endothelial Cells/drug effects , Glucose/toxicity , Nerve Degeneration , Retinal Ganglion Cells/drug effects , Retinal Neovascularization/pathology , Retinal Vessels/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Retinal Neovascularization/metabolism , Retinal Vessels/metabolism , Retinal Vessels/pathology , Transcription Factor Brn-3A/metabolism , Tubulin/metabolism , Vascular Endothelial Growth Factor A/metabolism
16.
Front Plant Sci ; 11: 594663, 2020.
Article in English | MEDLINE | ID: mdl-33240306

ABSTRACT

Understanding how host plant chemistry affects invasive insects is crucial for determining the physiological mechanism of host use and predicting invasive insect outbreak and damage on hosts. Here, we examined the effects of plant nutrition and defensive chemicals on host preference and performance of adults and larvae of the invasive potato tuberworm, Phthorimaea operculella (Zeller; Lepidoptera: Gelechiidae), on four native (Solanum tuberosum, Nicotiana tabacum, Datura stramonium, and Solanum lycopersicum) and three new (Solanum melongena, Physalis alkekengi, and Lycium barbarum) host plants. We found that adults preferred to oviposit on S. tuberosum and N. tabacum leaves and the soil around these native host plants over other hosts. Larvae performed well on S. tuberosum and N. tabacum, reaching higher pupa weight and having better survival. Larvae performed poorly on S. melongena, S. lycopersicum, P. alkekengi, D. stramonium, and L. barbarum, with lower pupa weight and lower survival. Solanum tuberosum and N. tabacum had higher leaf soluble proteins than other plants and lower leaf total phenolics than S. lycopersicum, D. stramonium, and L. barbarum. Moreover, carbon content and soluble protein were positively associated with larval survival, while defensive traits (lignin and total phenolics) negatively affected larval survival. These findings provide insights into understanding of biochemical mechanisms of interactions between invasive insects and host plants, indicating the importance of considering plant chemistry when assessing invasive insect host use and damage.

17.
Insects ; 11(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942700

ABSTRACT

Conspecific aboveground and belowground herbivores can interact with each other, mediated by plant secondary chemicals; however, little attention has been paid to the interaction between leaf feeders and tuber-feeders. Here, we evaluated the effect of the foliar feeding of P. operculella larvae on the development of conspecific larvae feeding on harvested tubers by determining the nutrition and defense metabolites in the whole plant (leaf, root and tuber). We found that leaf feeding negatively affected tuber larval performance by increasing the female larval developmental time and reducing the male pupal weight. In addition, aboveground herbivory increased α-chaconine and glycoalkaloids in tubers and α-solanine in leaves, but decreased α-chaconine and glycoalkaloids in leaves. Aboveground herbivory also altered the levels of soluble sugar, soluble protein, starch, carbon (C), nitrogen (N), as well as the C:N ratio in both leaves and tubers. Aboveground P. operculella infestations could affect the performance of conspecific larvae feeding on harvested tubers by inducing glycoalkaloids in the host plant. Our findings indicate that field leaf herbivory should be considered when assessing the quality of potato tubers and their responses to pests during storage.

18.
ACS Appl Mater Interfaces ; 12(26): 29344-29356, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32510925

ABSTRACT

Cesium (Cs) contained triple-cation and mixed halide perovskite (CsFAMA) is broadly employed as light absorption layers for efficient and stable perovskite solar cells (PSCs) fabrication with high reproducibility. On the other hand, thermal annealing is a universal post-treatment method for perovskite films preparation. Moreover, thermal management highly depends on perovskite materials. However, no specialized study has been reported on CsFAMA perovskite to date. Herein, we have systematically investigated the influence of thermal annealing and annealing time on CsFAMA films and their solar cells. We demonstrated that heating time of 45 or 60 min at 100 °C is desirable. More interestingly, we found that the unannealed CsFAMA films exhibit ultrahigh photoluminescence (PL) intensities, much stronger than that of annealed films. Note that PL intensities gradually weaken as a function of annealing time. In particular, the PL intensities of fresh films (after antisolvent dripping) are at least 200 times higher than that of 60 min annealed films. To our knowledge, it is the first time to report this PL behavior. We speculate that it is due to quantum confinement effect of perovskite crystal nuclei and "cage effect" of DMSO intermediates in the fresh films. To this point, the unannealed CsFAMA films may have great potential in PL emission applications.

19.
Oncol Lett ; 19(1): 460-468, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31897159

ABSTRACT

Retinoblastoma (RB) is the most prevalent childhood intraocular cancer type. Previous studies have demonstrated that c-myc (a proto-oncogene) is associated with tumorigenesis. However, at present, the influence of the expression profile and bioactivity of c-Myc on RB occurrence and progression is yet to be characterised. Notably, the present study demonstrated that c-myc is downregulated in the RB cell line WERI-Rb1. However, treatment with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) was revealed to significantly upregulate the expression of c-Myc mRNA and protein in WERI-Rb1 cells. Moreover, TSA increased the activity of the c-myc promoter in WERI-Rb1 cells, and the expression of c-Myc was also regulated by other HDAC inhibitors, including vorinostat (SAHA), valproic acid sodium salt (VPA) and entinostat. Notably, although c-myc was silenced in the Y79 cell line, the HDAC inhibitor TSA did not induce upregulation of mRNA and protein in Y79 cells. By contrast, certain HDAC inhibitors (TSA, VPA and SAHA) were discovered to significantly decrease the activity of the c-myc promoter in Y79 cells. Furthermore, the current data indicated that exogenous c-myc expression has a mild inhibitory effect on WERI-Rb1 and Y79 cell viability. Therefore, the present study revealed novel insights into the expression mechanism and bioactivity of c-Myc in RB cells.

20.
Invest Ophthalmol Vis Sci ; 59(5): 2133-2141, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29801148

ABSTRACT

Purpose: Tetramethylpyrazine (TMP) is the active ingredient extracted from the Chinese herb Chuanxiong. The purpose of our study was to identify the mechanism of therapeutic TMP suppression of pathologic chemokine receptor 4 (CXCR4) transcription. Methods: C57BL/6J mice with alkali-burned corneas were treated with either TMP eye drops (1.5 mg/mL) or PBS. Corneal neovascularization (CNV) was measured and a clinical assessment was made by slit lamp microscopy. Expression of CXCR4 and the transcription factors nuclear respiratory factor-1 (NRF-1), nuclear factor kappa B (NFκB), forkhead box C1, and yin yang 1 were tracked by real-time RT-PCR and immunofluorescence staining of murine corneas. Western blot, real-time PCR, and immunofluorescence evaluated expression of related genes in human umbilical vein endothelial cells (HUVECs) after 200-µmol/L TMP treatment. In addition, plasmid transfection and chromatin immunoprecipitation assays elucidated the relationship among NRF-1, NFκB, and CXCR4. Results: Corneas treated with TMP had smaller areas of neovascularization and scored better in clinical assessments. Injured corneas showed significantly elevated expressions of NRF-1, NFκB, and CXCR4 that were normalized in vivo by TMP treatment. Similarly, in HUVECs in vitro, TMP decreased expression of NRF-1, NFκB, and CXCR4. Overexpression of NFκB or NRF-1 raised the expression of CXCR4 in HUVECs, but not synergistically. Chromatin immunoprecipitation assays detected only NRF-1 bound to the CXCR4 promoter region, suggesting NFκB controls CXCR4 expression by upregulating NRF-1. Together, our data suggest TMP downregulates CXCR4 by repressing NRF-1 expression in CNV, likely indirectly by downregulating NFκB. Conclusions: Our results implicate a novel mechanism wherein TMP inhibits neovascularization via an NFκB/NRF-1/CXCR4 circuit.


Subject(s)
Burns, Chemical/drug therapy , Corneal Neovascularization/prevention & control , Eye Burns/chemically induced , NF-kappa B/metabolism , Nuclear Respiratory Factor 1/metabolism , Pyrazines/therapeutic use , Receptors, CXCR4/metabolism , Animals , Blotting, Western , Burns, Chemical/metabolism , Corneal Neovascularization/pathology , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , Nuclear Respiratory Factor 1/genetics , Real-Time Polymerase Chain Reaction , Receptors, CXCR4/genetics , Sodium Hydroxide , Vasodilator Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...