Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.632
Filter
1.
Sci Rep ; 14(1): 10595, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719908

ABSTRACT

Delayed diagnosis in patients with pulmonary tuberculosis (PTB) often leads to serious public health problems. High throughput sequencing was used to determine the expression levels of lncRNAs, mRNAs, and miRNAs in the lesions and adjacent health lung tissues of patients with PTB. Their differential expression profiles between the two groups were compared, and 146 DElncRs, 447 DEmRs, and 29 DEmiRs were obtained between lesions and adjacent health tissues in patients with PTB. Enrichment analysis for mRNAs showed that they were mainly involved in Th1, Th2, and Th17 cell differentiation. The lncRNAs, mRNAs with target relationship with miRNAs were predicted respectively, and correlation analysis was performed. The ceRNA regulatory network was obtained by comparing with the differentially expressed transcripts (DElncRs, DEmRs, DEmiRs), then 2 lncRNAs mediated ceRNA networks were established. The expression of genes within the network was verified by quantitative real-time PCR (qRT-PCR). Flow cytometric analysis revealed that the proportion of Th1 cells and Th17 cells was lower in PTB than in controls, while the proportion of Th2 cells increased. Our results provide rich transcriptome data for a deeper investigation of PTB. The ceRNA regulatory network we obtained may be instructive for the diagnosis and treatment of PTB.


Subject(s)
Gene Regulatory Networks , MicroRNAs , RNA, Long Noncoding , RNA, Messenger , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Transcriptome , Th17 Cells/immunology , Th17 Cells/metabolism , Female , Male , Adult , Middle Aged , Gene Expression Regulation , Lung/pathology , Lung/metabolism , RNA, Competitive Endogenous
2.
Sci Rep ; 14(1): 11383, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762657

ABSTRACT

To increase the efficiency of deep-hole blasting driving in mine rock tunnels, an innovative pattern of wedge cutting blasting with hole-inner delay was proposed. First, the blasting mechanisms of conventional and innovative wedge cutting patterns were theoretically investigated. The results showed that the resistance from large upper rock blocks and the clamping action from the surrounding rock were the major challenges of conventional cutting methods. For the innovative cutting pattern, under the conversion of the spatial distribution and release sequence of blasting energy, the first blasting of the upper charge can strengthen the breaking of the upper rock mass and create a new free surface, which provides favorable conditions for the delayed blasting of the bottom charge. Second, finite element models of two cutting patterns were established and solved, and the simulation results visually revealed the propagation of a stress wave. Critically, the stress strength in the upper cavity increased by 66-83% under the action of the upper charge, which was conducive to the breaking of the upper rock mass and the generation of a new free surface. Therefore, the rock mass in the bottom cavity can be readily broken and discharged. Ultimately, field applications were executed in a rock tunnel. Compared with a conventional cutting pattern, the proposed innovative cutting pattern can prominently increase the cycle advance and hole utilization and greatly reduce the unit consumption of explosives and detonators. This research confirms the usability of the innovative wedge cutting pattern with hole-inner delay in deep-hole blasting driving of rock tunnels.

3.
PLoS Negl Trop Dis ; 18(5): e0012136, 2024 May.
Article in English | MEDLINE | ID: mdl-38739637

ABSTRACT

BACKGROUND: Tuberculosis (TB) and COVID-19 co-infection poses a significant global health challenge with increased fatality rates and adverse outcomes. However, the existing evidence on the epidemiology and treatment of TB-COVID co-infection remains limited. METHODS: This updated systematic review aimed to investigate the prevalence, fatality rates, and treatment outcomes of TB-COVID co-infection. A comprehensive search across six electronic databases spanning November 1, 2019, to January 24, 2023, was conducted. The Joanna Briggs Institute Critical Appraisal Checklist assessed risk of bias of included studies, and meta-analysis estimated co-infection fatality rates and relative risk. RESULTS: From 5,095 studies screened, 17 were included. TB-COVID co-infection prevalence was reported in 38 countries or regions, spanning both high and low TB prevalence areas. Prevalence estimates were approximately 0.06% in West Cape Province, South Africa, and 0.02% in California, USA. Treatment approaches for TB-COVID co-infection displayed minimal evolution since 2021. Converging findings from diverse studies underscored increased hospitalization risks, extended recovery periods, and accelerated mortality compared to single COVID-19 cases. The pooled fatality rate among co-infected patients was 7.1% (95%CI: 4.0% ~ 10.8%), slightly lower than previous estimates. In-hospital co-infected patients faced a mean fatality rate of 11.4% (95%CI: 5.6% ~ 18.8%). The pooled relative risk of in-hospital fatality was 0.8 (95% CI, 0.18-3.68) for TB-COVID patients versus single COVID patients. CONCLUSION: TB-COVID co-infection is increasingly prevalent worldwide, with fatality rates gradually declining but remaining higher than COVID-19 alone. This underscores the urgency of continued research to understand and address the challenges posed by TB-COVID co-infection.


Subject(s)
COVID-19 , Coinfection , SARS-CoV-2 , Tuberculosis , Humans , COVID-19/mortality , COVID-19/epidemiology , COVID-19/complications , Coinfection/epidemiology , Coinfection/mortality , Tuberculosis/mortality , Tuberculosis/epidemiology , Tuberculosis/complications , Prevalence
4.
Nat Commun ; 15(1): 4232, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762479

ABSTRACT

Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.


Subject(s)
B-Lymphocytes , Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Inflammation , Interleukin-10 , Mice, Knockout , Obesity , Toll-Like Receptor 9 , Animals , Obesity/immunology , Obesity/microbiology , Obesity/metabolism , Dysbiosis/immunology , Dysbiosis/microbiology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Inflammation/metabolism , Mice , Diet, High-Fat/adverse effects , Interleukin-10/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Interferon Regulatory Factors
5.
Chemistry ; : e202401094, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797717

ABSTRACT

A 'passivated precursor' approach is developed for the efficient synthesis and isolation of all-alkynyl-protected gold nanoclusters. Direct reduction of dpa-passivated precursor Au-dpa (Hdpa = 2,2'-dipyridylamine) in one-pot under ambient conditions gives a series of clusters including Au22(C≡CR)18 (R = -C6H4-2-F), Au36(C≡CR)24, Au44(C≡CR)28, Au130(C≡CR)50, and Au144(C≡CR)60. These clusters can be well separated via column chromatography. The overall isolation yield of this series of clusters is 40% (based on gold), which is much improved in comparison with previous approaches. It is notable that the molecular structure of the giant cluster Au130(C≡CR)50 is revealed, which presents important information for understanding the structure of the mysterious Au130 nanoclusters. Theoretical calculations indicated Au130(C≡CR)50 has a smaller HOMO-LUMO gap than Au130(S-C6H4-4-CH3)50. This facile and reliable synthetic approach will greatly accelerate further studies on all-alkynyl-protected gold nanoclusters.

6.
Inquiry ; 61: 469580241254543, 2024.
Article in English | MEDLINE | ID: mdl-38814014

ABSTRACT

Environmental factors like COVID-19 can have significant impact on technical efficiency (TE) and total factor productivity (TFP) of health services provided. In this study, focusing on Maternal and Child Health (MCH) hospitals in Hubei Province of China in 2019 to 2021, we aimed to measure their TE and TFP, identify some influential environmental factors, and propose some policy recommendations. Altogether 62 secondary MCH hospitals were selected as the study sample. Four input indicators, 3 output indicators, and 4 environmental indicators were selected to analyze the panel data from 2019 to 2021. Three-stage Data Envelopment Analysis (DEA) and Malmquist Productivity Index (MPI) model were employed to estimate the TE and TFP of these hospitals. During 2019 to 2021, the inputs of the sample hospitals had increased, while the outputs had decreased. The inputs redundancy was negatively associated with birth rate, number of residents, and GDP per capita (P < .05). It was positively associated with number of COVID-19 infections (P < .05). The adjusted TE scores in 2019 to 2021 were 0.822, 0.784, and 0.803, respectively. The TFP declined in 2020 and 2021 compared to 2019, with scores being 0.845 and 0.762. The technical efficiency change (TEC) scores from 2019 to 2021 were 0.926 and 1.063. The technological change (TC) scores from 2019 to 2021 were 0.912 and 0.716. During 2019 to 2021, the operation of sample hospitals had been significantly influenced by environmental factors like COVID-19 pandemic, low birth rate, number of residents, and GDP per capita. The inputs had increased but outputs had decreased, leading to an increase in inputs redundancy and a decline in TE. The TFP showed a downward trend, with TC and SEC being the priority directions for improvement. Some recommendations are made for both hospitals and government to continuously improve the TE and TFP.


Subject(s)
COVID-19 , Efficiency, Organizational , Humans , China , COVID-19/epidemiology , SARS-CoV-2 , Female , Maternal-Child Health Services/statistics & numerical data , Maternal-Child Health Services/organization & administration , Child
7.
Biomed Pharmacother ; 175: 116705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713949

ABSTRACT

Currently, the drugs used in clinical to treat psoriasis mainly broadly suppress cellular immunity. However, these drugs can only provide temporary and partial symptom relief, they do not cure the condition and may lead to recurrence or even serious toxic side effects. In this study, we describe the discovery of a novel potent CDK8 inhibitor as a treatment for psoriasis. Through structure-based design, compound 46 was identified as the most promising candidate, exhibiting a strong inhibitory effect on CDK8 (IC50 value of 57 nM) along with favourable inhibition against NF-κB. Additionally, it demonstrated a positive effect in an in vitro psoriasis model induced by TNF-α. Furthermore, this compound enhanced the thermal stability of CDK8 and exerted evident effects on the biological function of CDK8, and it had favourable selectivity across the CDK family and tyrosine kinase. This compound showed no obvious inhibitory effect on CYP450 enzyme. Further studies confirmed that compound 46 exhibited therapeutic effect on IMQ-induced psoriasis, alleviated the inflammatory response in mice, and enhanced the expression of Foxp3 and IL-10 in the dorsal skin in vivo. This discovery provides a new strategy for developing selective CDK8 inhibitors with anti-inflammatory activity for the treatment of psoriasis.


Subject(s)
Cyclin-Dependent Kinase 8 , Protein Kinase Inhibitors , Psoriasis , Animals , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/metabolism , Psoriasis/drug therapy , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Mice , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Pyridines/pharmacology , Pyridines/chemistry , Mice, Inbred BALB C , Interleukin-10/metabolism , Male , Pyrroles/pharmacology , Pyrroles/chemistry , Forkhead Transcription Factors/metabolism , Drug Discovery/methods , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Disease Models, Animal , Skin/drug effects , Skin/pathology , Skin/metabolism
8.
Animals (Basel) ; 14(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791643

ABSTRACT

This study aimed to investigate the evolutionary profile (including diversity, activity, and abundance) of retrotransposons (RTNs) with long terminal repeats (LTRs) in ten species of Tetraodontiformes. These species, Arothron firmamentum, Lagocephalus sceleratus, Pao palembangensis, Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, Takifugu rubripes, Tetraodon nigroviridis, Mola mola, and Thamnaconus septentrionalis, are known for having the smallest genomes among vertebrates. Data mining revealed a high diversity and wide distribution of LTR retrotransposons (LTR-RTNs) in these compact vertebrate genomes, with varying abundances among species. A total of 819 full-length LTR-RTN sequences were identified across these genomes, categorized into nine families belonging to four different superfamilies: ERV (Orthoretrovirinae and Epsilon retrovirus), Copia, BEL-PAO, and Gypsy (Gmr, Mag, V-clade, CsRN1, and Barthez). The Gypsy superfamily exhibited the highest diversity. LTR family distribution varied among species, with Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, and Takifugu rubripes having the highest richness of LTR families and sequences. Additionally, evidence of recent invasions was observed in specific tetraodontiform genomes, suggesting potential transposition activity. This study provides insights into the evolution of LTR retrotransposons in Tetraodontiformes, enhancing our understanding of their impact on the structure and evolution of host genomes.

9.
Angew Chem Int Ed Engl ; : e202404798, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713516

ABSTRACT

A novel gold(I)-cluster-based twin-cage is constructed by post-clustering covalent modification of a hexa-aldehyde cluster precursor with triaminotriethylamines. The cages-on-cluster structure have double cavities and four binding sites, showing site discriminative binding for silver(I) and copper(I) guests. The guests in the tripodal hats affect the luminescence of the cluster: tetra-silver(I) host-guest complex is weak red emissive, while bis-copper(I)-bis-silver(I) one is non-emissive but a stimuli-responsive supramolecule. The copper(I) ion inside the tri-imine cavity is oxidation sensitive, which enable the release of the bright emissive precursor cluster triggered by H2O2 solution. The hybridization of a cluster with cavities to construct a cluster-based cage presents an innovative concept for functional cluster design, and the post-clustering covalent modification opens up new avenues of finely tuning the properties of clusters.

10.
Front Oncol ; 14: 1390824, 2024.
Article in English | MEDLINE | ID: mdl-38800384

ABSTRACT

Previous studies indicated that adipose tissue significantly influences cancer invasion and lymphatic metastasis. However, the impact of neck adipose tissue (NAT) on lymph node metastasis associated with head and neck cancer remains ambiguous. Here, we systematically assess the classification and measurement criteria of NAT and evaluate the association of adipose tissue and cancer-associated adipocytes with head and neck cancer. We delve into the potential mechanisms by which NAT facilitate cervical lymph node metastasis in head and neck cancer, particularly through the secretion of adipokines such as leptin, adiponectin, and Interleukin-6. Our aim is to elucidate the role of NAT in the progression and metastasis of head and neck cancer, offering new insights into prevention and treatment.

11.
Ann Hematol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805037

ABSTRACT

In this prospective, multicenter, Phase 2 clinical trial (NCT02987244), patients with peripheral T-cell lymphomas (PTCLs) who had responded to first-line chemotherapy with cyclophosphamide, doxorubicin or epirubicin, vincristine or vindesine, etoposide, and prednisone (Chi-CHOEP) were treated by autologous stem cell transplantation (ASCT) or with chidamide maintenance or observation. A total of 85 patients received one of the following interventions: ASCT (n = 15), chidamide maintenance (n = 44), and observation (n = 26). estimated 3 PFS and OS rates were 85.6%, 80.8%, and 49.4% (P = 0.001). The two-year OS rates were 85.6%, 80.8%, and 69.0% (P = 0.075).The ASCT and chidamide maintenance groups had significantly better progression-free survival (PFS) than the observation group (P = 0.001, and P = 0.01, respectively). The overall survival (OS) differed significantly between the chidamide maintenance group and the observation group ( P = 0.041). The multivariate and propensity score matching analyses for PFS revealed better outcomes in the subjects in the chidamide maintenance than observation groups (P = 0.02). The ASCT and chidamide maintenance groups had significant survival advantages over the observation group. In the post-remission stage of the untreated PTCL patients, single-agent chidamide maintenance demonstrated superior PFS and better OS than observation. Our findings highlight the potential benefit of chidamide in this patient subset, warranting further investigation through larger prospective trials. Clinical trial registration: clinicaltrial.gov, NCT02987244. Registered 8 December 2016, http://www.clinicaltrials.gov/ct2/show/NCT02987244 .

12.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38602738

ABSTRACT

Cerebral small vessel disease is the one of the most prevalent causes of vascular cognitive impairment. We aimed to find objective and process-based indicators related to memory function to assist in the detection of memory impairment in patients with cerebral small vessel disease. Thirty-nine cerebral small vessel disease patients and 22 healthy controls were invited to complete neurological examinations, neuropsychological assessments, and eye tracking tasks. Eye tracking indicators were recorded and analyzed in combination with imaging features. The cerebral small vessel disease patients scored lower on traditional memory task and performed worse on eye tracking memory task performance compared to the healthy controls. The cerebral small vessel disease patients exhibited longer visit duration and more visit count within areas of interest and targets and decreased percentage value of total visit duration on target images to total visit duration on areas of interest during decoding stage among all levels. Our results demonstrated the cerebral small vessel disease patients performed worse in memory scale and eye tracking memory task, potentially due to their heightened attentional allocation to nontarget images during the retrieval stage. The eye tracking memory task could provide process-based indicators to be a beneficial complement to memory assessment and new insights into mechanism of memory impairment in cerebral small vessel disease patients.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Humans , Eye-Tracking Technology , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cognition
13.
Article in English | MEDLINE | ID: mdl-38641928

ABSTRACT

BACKGROUND: Sarcopenia is characterized by progressive loss of muscle mass and function due to aging. DNA methylation has been identified to play important roles in the dysfunction of skeletal muscle. The aim of our present study was to explore the whole blood sample-based methylation changes of skeletal muscle function-related factors in patients with sarcopenia. METHODS: The overall DNA methylation levels were analysed by using MethlTarget™ DNA Methylation Analysis platform in a discovery set consistent of 50 sarcopenic older adults (aged ≥65 years) and 50 age- and sex-matched non-sarcopenic individuals. The candidate differentially methylated regions (DMRs) were further validated by Methylation-specific PCR (MSP) in another two independent larger sets and confirmed by pyrosequencing. Receiver operating characteristic (ROC) curve analysis was used to determine the optimum cut-off levels of fibroblast growth factor 2 (FGF2)_30 methylation best predicting sarcopenia and area under the ROC curve (AUC) was measured. The correlation between candidate DMRs and the risk of sarcopenia was investigated by univariate analysis and multivariate logistic regression analysis. RESULTS: Among 1149 cytosine-phosphate-guanine (CpG) sites of 27 skeletal muscle function-related secretary factors, 17 differentially methylated CpG sites and 7 differentially methylated regions (DMRs) were detected between patients with sarcopenia and control subjects in the discovery set. Further methylation-specific PCR identified that methylation of fibroblast growth factor 2 (FGF2)_30 was lower in patients with sarcopenia and the level was decreased as the severity of sarcopenia increased, which was confirmed by pyrosequencing. Correlation analysis demonstrated that the methylation level of FGF2_30 was positively correlated to ASMI (r = 0.372, P < 0.001), grip strength (r = 0.334, P < 0.001), and gait speed (r = 0.411, P < 0.001). ROC curve analysis indicated that the optimal cut-off value of FGF2_30 methylation level that predicted sarcopenia was 0.15 with a sensitivity of 84.6% and a specificity of 70.1% (AUC = 0.807, 95% CI = 0.756-0.858, P < 0.001). Multivariate logistic regression analyses showed that lower FGF2_30 methylation level (<0.15) was significantly associated with increased risk of sarcopenia even after adjustment for potential confounders including age, sex, and BMI (adjusted OR = 9.223, 95% CI: 6.614-12.861, P < 0.001). CONCLUSIONS: Our results suggest that lower FGF2_30 methylation is correlated with the risk and severity of sarcopenia in the older adults, indicating that FGF2 methylation serve as a surrogate biomarker for the screening and evaluation of sarcopenia.

14.
Chem Sci ; 15(15): 5573-5580, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638207

ABSTRACT

Palladium-catalyzed enantioselective domino Heck/intramolecular C-H functionalization reaction, as a valuable strategy for creating molecular diversity, has remained a prominent challenge. Here, we describe a Pd/XuPhos catalyst for asymmetric domino Heck/intermolecular C-H alkylation of unactivated alkenes with diverse polyfluoro- and heteroarenes in a highly chemo- and enantioselective manner. This process enables efficient synthesis of various dihydrobenzofurans, indolines and indanes, which are of interest in pharmaceutical research and other areas. Late-stage modifications of the core structures of natural products are also well showcased. Moreover, synthetic transformations create a valuable platform for preparing a series of functionalized molecules. Several control experiments for mechanistic study are conducted to pursue a further understanding of the reaction.

15.
Front Microbiol ; 15: 1290227, 2024.
Article in English | MEDLINE | ID: mdl-38686109

ABSTRACT

Background: Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis (Mtb), remains a serious public health problem. Increasing evidence supports that selective evolution is an important force affecting genomic determinants of Mtb phenotypes. It is necessary to further understand the Mtb selective evolution and identify the positively selected genes that probably drive the phenotype of Mtb. Methods: This study mainly focused on the positive selection of 807 Mtb strains from Southern Xinjiang of China using whole genome sequencing (WGS). PAML software was used for identifying the genes and sites under positive selection in 807 Mtb strains. Results: Lineage 2 (62.70%) strains were the dominant strains in this area, followed by lineage 3 (19.45%) and lineage 4 (17.84%) strains. There were 239 codons in 47 genes under positive selection, and the genes were majorly associated with the functions of transcription, defense mechanisms, and cell wall/membrane/envelope biogenesis. There were 28 codons (43 mutations) in eight genes (gyrA, rpoB, rpoC, katG, pncA, embB, gid, and cut1) under positive selection in multi-drug resistance (MDR) strains but not in drug-susceptible (DS) strains, in which 27 mutations were drug-resistant loci, 9 mutations were non-drug-resistant loci but were in drug-resistant genes, 2 mutations were compensatory mutations, and 5 mutations were in unknown drug-resistant gene of cut1. There was a codon in Rv0336 under positive selection in L3 strains but not in L2 and L4 strains. The epitopes of T and B cells were both hyper-conserved, particularly in the T-cell epitopes. Conclusion: This study revealed the ongoing selective evolution of Mtb. We found some special genes and sites under positive selection which may contribute to the advantage of MDR and L3 strains. It is necessary to further study these mutations to understand their impact on phenotypes for providing more useful information to develop new TB interventions.

16.
Article in English | MEDLINE | ID: mdl-38583495

ABSTRACT

PURPOSE: The aim of this study was to compare the clinical benefit and safety of the triple combination of stereotactic body radiotherapy (SBRT), lenvatinib, and programmed cell death protein 1 (PD-1) inhibitors with the dual combination of SBRT and lenvatinib in patients with unresectable hepatocellular carcinoma (uHCC). METHODS AND MATERIALS: Patients with uHCC who received SBRT in combination with lenvatinib and PD-1 inhibitors or SBRT in combination with lenvatinib alone as first-line treatment from October 2018 to July 2022 were reviewed in this study. The primary endpoints were overall survival (OS) and progression-free survival (PFS). The secondary endpoints were intrahepatic PFS, extrahepatic PFS, and objective remission rate. In addition, safety profiles were assessed by analyzing treatment-related adverse events between the two groups to assess safety profiles. RESULTS: In total, 214 patients with uHCC who received combination therapy were included in this retrospective study. Among them, 146 patients received triple combination therapy of SBRT, lenvatinib, and PD-1 inhibitors (SBRT-L-P group), and 68 patients received dual therapy of SBRT and lenvatinib (SBRT-L group). The median OS times of the 2 groups were 31.2 months and 17.4 months, respectively (P < .001). The median PFS time was significantly longer in the SBRT-L-P group than in the SBRT-L group (15.6 months vs 8.8 months, P < .001). Additionally, the median intrahepatic PFS (17.5 vs 9.9 months, P < .001) and extrahepatic PFS (20.9 vs 11.6 months, P < .001) were significantly longer in the SBRT-L-P group than in the SBRT-L group. The objective remission rate in the SBRT-L-P group was higher than in the SBRT-L group (63.0 vs 39.7%, P = .002). The incidence and severity of treatment-related adverse events in the SBRT-L-P group were comparable to those in the SBRT-L group. CONCLUSION: The use of both lenvatinib and PD-1 inhibitors with SBRT in patients with uHCC was associated with improved overall survival compared with lenvatinib and SBRT alone with a manageable safety profile.

17.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623654

ABSTRACT

BACKGROUND: Blood shortage is a global challenge, impacting elective surgeries with high bleeding risk. Predicting intraoperative blood use, optimizing resource allocation, and ensuring safe elective surgery are vital. This study targets identifying key bleeding risk factors in Aortic Valve Replacement (AVR) through machine learning. METHODS: Data from 702 AVR patients were split into 70% training and 30% test sets. Thirteen models predicted RBC transfusion. SHapley Additive exPlanations (SHAP) analyzed risk factors. RESULTS: Logistic Regression excelled, with Area Under Curve (AUC) 0.872 and 81.0% accuracy on the test set. Notably, female gender, Hemoglobin (HGB) < 131.91 g/L, Hematocrit (HCT) < 0.41L/L, weight < 59.49 kg, age > 54.47 year, Mean Corpuscular Hemoglobin (MCH) < 29.15 pg, Total Protein (TP) > 69.7 g/L, FIB > 2.61 g/L, height < 160 cm, and type of operation is Surgical Aortic Valve Replacement (SAVR) were significant RBC transfusion predictors. CONCLUSIONS: The study's model accurately forecasts AVR-related RBC transfusions. This informs presurgery blood preparations, reducing resource waste and aiding clinicians in optimizing patient care.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Humans , Female , Aortic Valve/surgery , Erythrocyte Transfusion , Risk Factors , Machine Learning , Retrospective Studies
18.
BMC Gastroenterol ; 24(1): 137, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641789

ABSTRACT

OBJECTIVE: Prediction of lymph node metastasis (LNM) for intrahepatic cholangiocarcinoma (ICC) is critical for the treatment regimen and prognosis. We aim to develop and validate machine learning (ML)-based predictive models for LNM in patients with ICC. METHODS: A total of 345 patients with clinicopathological characteristics confirmed ICC from Jan 2007 to Jan 2019 were enrolled. The predictors of LNM were identified by the least absolute shrinkage and selection operator (LASSO) and logistic analysis. The selected variables were used for developing prediction models for LNM by six ML algorithms, including Logistic regression (LR), Gradient boosting machine (GBM), Extreme gradient boosting (XGB), Random Forest (RF), Decision tree (DT), Multilayer perceptron (MLP). We applied 10-fold cross validation as internal validation and calculated the average of the areas under the receiver operating characteristic (ROC) curve to measure the performance of all models. A feature selection approach was applied to identify importance of predictors in each model. The heat map was used to investigate the correlation of features. Finally, we established a web calculator using the best-performing model. RESULTS: In multivariate logistic regression analysis, factors including alcoholic liver disease (ALD), smoking, boundary, diameter, and white blood cell (WBC) were identified as independent predictors for LNM in patients with ICC. In internal validation, the average values of AUC of six models ranged from 0.820 to 0.908. The XGB model was identified as the best model, the average AUC was 0.908. Finally, we established a web calculator by XGB model, which was useful for clinicians to calculate the likelihood of LNM. CONCLUSION: The proposed ML-based predicted models had a good performance to predict LNM of patients with ICC. XGB performed best. A web calculator based on the ML algorithm showed promise in assisting clinicians to predict LNM and developed individualized medical plans.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Lymphatic Metastasis , Models, Statistical , Prognosis , Machine Learning , Bile Ducts, Intrahepatic
19.
iScience ; 27(5): 109682, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38660403

ABSTRACT

The aryl hydrocarbon receptor (AhR) pathway may play an important role in the regulation of osteoclasts, but there are still conflicting studies on this aspect, and the specific mechanism of action has not been fully elucidated. Therefore, we conducted this study to find a drug to treat osteoporosis that targets AhR. We found that StemRegenin 1 inhibited RANKL-induced osteoclastogenesis in a concentration-dependent and time-dependent manner. Through further experiments, we found that SR1 can inhibit nuclear transcription of AhR and inhibit c-src phosphorylation, and ultimately regulates the activation of the NF-κB and p-ERK/mitogen-activated protein kinase pathways. Therefore, for the first time, we discovered the way in which the AhR-c-src-NF-κB/p-ERK MAPK-NFATc1 signaling pathway regulates the expression of osteoclast differentiation-associated proteins. Finally, SR1 was shown to successfully reverse bone loss in OVX mice. These studies provide us with ideas for finding new way to treat osteoporosis.

20.
Adv Mater ; : e2401271, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549262

ABSTRACT

The advancement of aqueous micro-supercapacitors offers an enticing prospect for a broad spectrum of applications, spanning from wearable electronics to micro-robotics and sensors. Unfortunately, conventional micro-supercapacitors are characterized by low capacity and slopy voltage profiles, limiting their energy density capabilities. To enhance the performance of these devices, the use of 2D MXene-based compounds has recently been proposed. Apart from their capacitive contributions, these structures can be loaded with redox-active nanowires which increase their energy density and stabilize their operation voltage. However, introducing rigid nanowires into MXene films typically leads to a significant decline in their mechanical properties, particularly in terms of flexibility. To overcome this issue, super stretchable micro-pseudocapacitor electrodes composed of MXene nanosheets and in situ reconstructed Ag nanoparticles (Ag-NP-MXene) are herein demonstrated, delivering high energy density, stable operation voltage of ≈1 V, and fast charging capabilities. Careful experimental analysis and theoretical simulations of the charging mechanism of the Ag-NP-MXene electrodes reveal a dual nature charge storage mechanism involving ad(de)sorption of ions and conversion reaction of Ag nanoparticles. The superior mechanical properties of synthesized films obtained through in situ construction of Ag-NP-MXene structure show an ultra stretchability, allowing the devices to provide stable voltage and energy output even at 100% elongation.

SELECTION OF CITATIONS
SEARCH DETAIL
...