Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 17: 796526, 2023.
Article in English | MEDLINE | ID: mdl-37007677

ABSTRACT

Objective: Research on the differences in physiological and psychological mechanisms of practitioners in different occupations is a current hot spot, such as pilots. This study explores the frequency-dependent changes of pilots' low-frequency amplitudes in the classical frequency band and sub-frequency band between pilots and general occupations. The goal of the current work is to provide objective brain images for the selection and evaluation of outstanding pilots. Methods: Twenty-six pilots and 23 age-, sex-, and education-matched healthy controls were included in this study. Then the mean low-frequency amplitude (mALFF) of the classical frequency band and sub-frequency band was calculated. The two-sample t-test was performed on SPM12 to analyze the differences between the flight group and control group in the classic frequency band. To explore the main effects and the inter-band effects of the mean low-frequency amplitude (mALFF), the mixed design analysis of variance was applied in the sub-frequency bands. Results: Compared with the control group, left cuneiform lobe and the right cerebellum six area of pilots show significant difference in the classic frequency band. And the main effect results in the sub-frequency bands show that the area with higher mALFF in the flight group is located on the left middle occipital gyrus, the left cuneiform lobe, the right superior occipital gyrus, the right superior gyrus, and the left lateral central lobule. However, the area where the value of mALFF decreased is mainly located on the left rectangular cleft with surrounding cortex and the right dorsolateral superior frontal gyrus. Besides, compared with the slow-4 frequency band, the mALFF of the left middle orbital middle frontal gyrus of the slow-5 frequency band was increased, while the mALFF value of the left putamen, left fusiform gyrus, and right thalamus was decreased. The sensitivity of the slow-5 frequency band and the slow-4 frequency band to the pilots' different brain areas was also different. Also, the different brain areas in the classic frequency band and the sub-frequency band were significantly correlated with pilots' flight hours. Conclusion: Our findings showed that the left cuneiform brain area and the right cerebellum of pilots changed significantly during resting state. And there was a positive correlation between the mALFF value of those brain area and flight hours. The comparative analysis of sub-frequency bands found that the slow-5 band could elucidate a wider range of different brain regions, providing new ideas for exploring the brain mechanisms of pilots.

2.
PLoS One ; 18(1): e0276957, 2023.
Article in English | MEDLINE | ID: mdl-36706169

ABSTRACT

The impact of occupations on brain structures has attracted considerable research interests in the last decade. The aim of this research is to find the effect of flight training on brain gray matter volume of pilots. The whole-brain structural magnetic resonance imaging (sMRI) data collected from 26 pilots and 24 controls was analyzed using Voxel-based morphological analysis method (VBM) combined with T1 data to quantitatively detect the local gray matter of brain tissue and calculate the gray matter volume. The result shows that the pilot group has larger gray matter volume in the lingual gyrus and fusiform gyrus compared to the control group (P<0.05). Furthermore, there is a positive correlation between the gray matter volume and the number of flight hours (r = 0.426, P = 0.048) after studying the average gray matter volume value of the agglomerate of participants whose flight hours are between 0 and 1000 hours. The lingual gyrus and fusiform gyrus are involved in high-level visual processing, memory, multisensory integration and perception. The study has indicated the flight training could enlarge gray matter volume in the lingual gyrus and fusiform gyrus. During flying, pilots need to observe the instrumentation in the cockpit and fully interpret the readings, which may lead to the results.


Subject(s)
Brain , Gray Matter , Humans , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Cerebral Cortex , Temporal Lobe/diagnostic imaging , Occipital Lobe , Magnetic Resonance Imaging
3.
Aerosp Med Hum Perform ; 91(10): 798-805, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33187566

ABSTRACT

BACKGROUND: Piloting an aircraft is a complex cognitive task. Human error represents a major contributing factor in aviation accidents. Emotion plays an important role in aviation safety. We performed a functional magnetic resonance imaging (fMRI) study to explore whether pilots and nonpilots may differ in the neural mechanisms responsible for the processing of conflict emotional information.METHODS: A total of 27 civil aviation pilots and 24 nonpilot controls performed the emotional Stroop task, in which participants were required to identify the facial expressions of the stimuli while ignoring the congruent or incongruent emotional words superimposed on the faces. Neural responses to the stimuli were compared between pilots and controls. Also, a psychophysiological interaction (PPI) analysis was performed to explore whether there were differences in effective connectivity between pilots and nonpilots.RESULTS: Behavioral data showed that pilots (21.23 ms) and nonpilots (26.78 ms) had equivalent congruency effects. Nevertheless, their neural activation patterns differed. Compared with pilots, nonpilots exhibited neural activity in the right supramarginal gyrus when processing incongruent stimuli, and more regions were activated in the process of conflict monitoring. The PPI analysis showed greater activity between the right supramarginal gyrus and the right lingual gyrus when nonpilots confronted incongruent vs. congruent stimuli. However, this effective connectivity was not found in pilots.CONCLUSION: These results suggest different mechanisms underlying emotional conflict control between pilots and the general population.Jiang H, Xu K, Chen X, Wang Q, Yang Y, Fu C, Guo X, Chen X, Yang J. The neural underpinnings of emotional conflict control in pilots. Aerosp Med Hum Perform. 2020; 91(10):798805.


Subject(s)
Aviation , Emotions , Humans , Magnetic Resonance Imaging , Stroop Test
4.
PLoS One ; 15(6): e0234790, 2020.
Article in English | MEDLINE | ID: mdl-32555721

ABSTRACT

Civil aviation is a distinctive career. Pilots need to monitor the entire system in real time. However, the psychophysiological mechanism of flying is largely unknown. The human brain is a large-scale interconnected organization, and many stable intrinsic large-scale brain networks have been identified. Among them are three core neurocognitive networks: default mode network (DMN), central executive network (CEN), and salience network (SN). These three networks play a critical role in human cognition. This study aims to examine the dynamic properties of the three large-scale brain networks in civil aviation pilots. We collected resting-state functional magnetic resonance imaging data from pilots. Independent component analysis, which is a data-driven approach, was combined with sliding window dynamic functional connectivity analysis to detect the dynamic properties of large-scale brain networks. Our results revealed that pilots exhibit an increased interaction of the CEN with the DMN and the SN along with a decreased interaction within the CEN. In addition, the temporal properties of functional dynamics (number of transitions) increased in pilots compared to healthy controls. In general, pilots exhibited increased between-network functional connectivity, decreased within-network functional connectivity, and a higher number of transitions. These findings suggest that pilots might have better functional dynamics and cognitive flexibility.


Subject(s)
Brain Mapping , Brain/physiology , Adult , Brain/diagnostic imaging , Case-Control Studies , Cluster Analysis , Humans , Magnetic Resonance Imaging , Male , Pilots , Young Adult
5.
Front Neurosci ; 13: 1406, 2019.
Article in English | MEDLINE | ID: mdl-31992967

ABSTRACT

BACKGROUND: Airlines occupy an increasingly important place in the economy of many countries. Because air disasters may cause substantial losses, comprehensive surveys of the psychophysiological mechanism of flying are needed; however, relatively few studies have focused on pilots. The default mode network (DMN) is an important intrinsic connectivity network involved in a range of functions related to flying. This study aimed to examine functional properties of the DMN in pilots. METHOD: Resting-state functional magnetic resonance imaging data from 26 pilots and 24 controls were collected. Independent component analysis, a data-driven approach, was combined with functional connectivity analysis to investigate functional properties of the DMN in pilots. RESULTS: The pilot group exhibited increased functional integration in the precuneus/posterior cingulate cortex (PCC) and left middle occipital gyrus. Subsequent functional connectivity analysis identified enhanced functional connection between the precuneus/PCC and medial superior frontal gyrus. CONCLUSION: The pilot group exhibited increased functional connections within the DMN. These findings highlight the importance of the DMN in the neurophysiological mechanism of flying.

6.
Behav Res Ther ; 49(4): 252-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21334597

ABSTRACT

Despite evidence indicating fatness and thinness information are processed differently among weight-preoccupied and eating disordered individuals, the exact nature of these attentional biases is not clear. In this research, eye movement (EM) tracking assessed biases in specific component processes of visual attention (i.e., orientation, detection, maintenance and disengagement of gaze) in relation to body-related stimuli among 20 weight dissatisfied (WD) and 20 weight satisfied young women. Eye movements were recorded while participants completed a dot-probe task that featured fatness-neutral and thinness-neutral word pairs. Compared to controls, WD women were more likely to direct their initial gaze toward fatness words, had a shorter mean latency of first fixation on both fatness and thinness words, had longer first fixation on fatness words but shorter first fixation on thinness words, and shorter total gaze duration on thinness words. Reaction time data showed a maintenance bias towards fatness words among the WD women. In sum, results indicated WD women show initial orienting, speeded detection and initial maintenance biases towards fat body words in addition to a speeded detection - avoidance pattern of biases in relation to thin body words. In sum, results highlight the importance of the utility of EM-tracking as a means of identifying subtle attentional biases among weight dissatisfied women drawn from a non-clinical setting and the need to assess attentional biases as a dynamic process.


Subject(s)
Attention/physiology , Body Image , Eye Movements/physiology , Orientation/physiology , Personal Satisfaction , Self Concept , Adolescent , Adult , Body Weight , Eye Movement Measurements , Female , Humans , Photic Stimulation , Reaction Time/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...