Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.922
Filter
1.
Adv Sci (Weinh) ; : e2401869, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959395

ABSTRACT

Ionic conductive hydrogels (ICHs) have recently gained prominence in biosensing, indicating their potential to redefine future biomedical applications. However, the integration of these hydrogels into sensor technologies and their long-term efficacy in practical applications pose substantial challenges, including a synergy of features, such as mechanical adaptability, conductive sensitivity, self-adhesion, self-regeneration, and microbial resistance. To address these challenges, this study introduces a novel hydrogel system using an imidazolium salt with a ureido backbone (UL) as the primary monomer. Fabricated via a straightforward one-pot copolymerization process that includes betaine sulfonate methacrylate (SBMA) and acrylamide (AM), the hydrogel demonstrates multifunctional properties. The innovation of this hydrogel is attributed to its robust mechanical attributes, outstanding strain responsiveness, effective water retention, and advanced self-regenerative and healing capabilities, which collectively lead to its superior performance in various applications. Moreover, this hydrogel  exhibited broad-spectrum antibacterial activity. Its potential for biomechanical monitoring, especially in tandem with contact and noncontact electrocardiogram (ECG) devices, represents a noteworthy advancement in precise real-time cardiac monitoring in clinical environments. In addition, the conductive properties of the hydrogel make it an ideal substrate for electrophoretic patches aimed at treating infected wounds and consequently enhancing the healing process.

2.
Front Cardiovasc Med ; 11: 1387421, 2024.
Article in English | MEDLINE | ID: mdl-38966753

ABSTRACT

Background: Digital Subtraction Angiography (DSA) is currently the most effective diagnostic method for vascular diseases, but it is still subject to various factors, resulting in uncertain diagnosis. Therefore, a new technology is needed to help clinical doctors improve diagnostic accuracy and efficiency. Purpose: The objective of the study was to investigate the effect of utilizing color-coded parametric imaging techniques on the accuracy of identifying active bleeding through DSA, the widely accepted standard for diagnosing vascular disorders. Methods: Several variables can delay the diagnosis and treatment of active bleeding with DSA. To resolve this, we carried out an in vitro simulation experiment to simulate vascular hemorrhage and utilized five color-coded parameters (area under curve, time to peak, time-of-arrival, transit time, and flow rate of contrast agent) to determine the optimal color coding parameters. We then verified it in a clinical study. Results: Five different color-coded parametric imaging methods were compared and the time-of-arrival color coding was the most efficient technique for diagnosing active hemorrhage, with a statistically significant advantage (P < 0.001). In clinical study, 135 patients (101 with confirmed bleeding and 34 with confirmed no bleeding) were collected. For patients whose bleeding could not be determined using DSA alone (55/101) and whose no bleeding could not be diagnosed by DSA alone (35/55), the combination of time-of-arrival color parametric imaging was helpful for diagnosis, with a statistically significant difference (P < 0.01 and P = 0.01). Conclusions: The time-of-arrival color coding imaging method is a valuable tool for detecting active bleeding. When combined with DSA, it improves the visual representation of active hemorrhage and improves the efficiency of diagnosis.

3.
J Alzheimers Dis ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38968047

ABSTRACT

Background: Urinary Alzheimer-associated neuronal thread protein (AD7c-NTP) is a biomarker for the early diagnosis of Alzheimer's disease (AD). It remains unclear whether hepatorenal function affects the urinary AD7c-NTP level. Objective: To evaluate the effects of hepatorenal function on urinary AD7c-NTP level. Methods: We enrolled 453 participants aged 60-100 years. An automated chemistry analyzer was used to determine the indicators of serum hepatorenal function. Enzyme-linked immunosorbent assay was used to measure the urinary AD7c-NTP level. Results: Spearman's correlation analysis showed a negative correlation between urinary AD7c-NTP levels and indicators of hepatorenal function, including albumin (r = -0.181, p < 0.001), albumin/globulin ratio (r = -0.224, p < 0.001), cholinesterase (r = -0.094, p = 0.046), total carbon dioxide (r = -0.102, p = 0.030), and glomerular filtration rate (r = -0.260, p < 0.001), as well as a positive correlation with globulin (r = 0.141, p = 0.003), aspartate transaminase (r = 0.186, p < 0.001), blood urine nitrogen (r = 0.210, p < 0.001), creatinine (r = 0.202, p < 0.001), uric acid (r = 0.229, p < 0.001), and cystatin C (r = 0.265, p < 0.001). The least absolute shrinkage and selection operator (LASSO) regression analysis and multiple linear regression model analyses showed that the statistically significant hepatorenal indicators for predicting AD7c-NTP were A/G (p = 0.007), AST (p = 0.002), BUN (p = 0.019), and UA (p = 0.003). Conclusions: The effects of hepatorenal indicators should be considered when using urinary AD7c-NTP levels in clinical settings.

4.
World J Gastroenterol ; 30(23): 2991-3004, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38946868

ABSTRACT

BACKGROUND: Colorectal cancer significantly impacts global health, with unplanned reoperations post-surgery being key determinants of patient outcomes. Existing predictive models for these reoperations lack precision in integrating complex clinical data. AIM: To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients. METHODS: Data of patients treated for colorectal cancer (n = 2044) at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected. Patients were divided into an experimental group (n = 60) and a control group (n = 1984) according to unplanned reoperation occurrence. Patients were also divided into a training group and a validation group (7:3 ratio). We used three different machine learning methods to screen characteristic variables. A nomogram was created based on multifactor logistic regression, and the model performance was assessed using receiver operating characteristic curve, calibration curve, Hosmer-Lemeshow test, and decision curve analysis. The risk scores of the two groups were calculated and compared to validate the model. RESULTS: More patients in the experimental group were ≥ 60 years old, male, and had a history of hypertension, laparotomy, and hypoproteinemia, compared to the control group. Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation (P < 0.05): Prognostic Nutritional Index value, history of laparotomy, hypertension, or stroke, hypoproteinemia, age, tumor-node-metastasis staging, surgical time, gender, and American Society of Anesthesiologists classification. Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility. CONCLUSION: This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer, which can improve treatment decisions and prognosis.


Subject(s)
Colorectal Neoplasms , Machine Learning , Postoperative Complications , Reoperation , Humans , Male , Colorectal Neoplasms/surgery , Colorectal Neoplasms/pathology , Female , Middle Aged , Reoperation/statistics & numerical data , Retrospective Studies , Risk Factors , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Aged , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Nomograms , ROC Curve , China/epidemiology , Adult
5.
PLoS One ; 19(7): e0306667, 2024.
Article in English | MEDLINE | ID: mdl-38950023

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0109124.].

6.
Biochem Pharmacol ; 226: 116408, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969297

ABSTRACT

Metastatic recurrence is still a major challenge in breast cancer treatment. Patients with triple negative breast cancer (TNBC) develop early recurrence and relapse more frequently. Due to the lack of specific therapeutic targets, new targeted therapies for TNBC are urgently needed. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway is one of the active pathways involved in chemoresistance and survival of TNBC, being considered as a potential target for TNBC treatment. Our present study identified ticagrelor, an anti-platelet drug, as a pan-PI3K inhibitor with potent inhibitory activity against four isoforms of class I PI3K. At doses normally used in clinic, ticagrelor showed weak cytotoxicity against a panel of breast cancer cells, but significantly inhibited the migration, invasion and the actin cytoskeleton organization of human TNBC MDA-MB-231 and SUM-159PT cells. Mechanistically, ticagrelor effectively inhibited PI3K downstream mTOR complex 1 (mTORC1) and mTORC2 signaling by targeting PI3K and decreased the protein expression of epithelial-mesenchymal transition (EMT) markers. In vivo, ticagrelor significantly suppressed tumor cells lung metastasis in 4T1 tumor bearing BALB/c mice model and experimental lung metastasis model which was established by tail vein injection of GFP-labeled MDA-MB-231 cells. The above data demonstrated that ticagrelor can inhibit the migration and invasion of TNBC both in vitro and in vivo by targeting PI3K, suggesting that ticagrelor, a pan-PI3K inhibitor, might represent a promising therapeutic agent for the treatment of metastatic TNBC.

7.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 467-475, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970521

ABSTRACT

Red blood cells (RBCs) are the primary mediators of oxygen transport in the human body, and their function is mainly achieved through conformational changes of hemoglobin (Hb). Hb is a tetramer composed of four subunits, with HbA being the predominant Hb in healthy adults, existing in two forms: tense state (T state) and relaxed state (R state). Endogenous regulators of Hb conformation include 2,3-diphosphoglyceric acid, carbon dioxide, protons, and chloride ions, while exogenous regulators include inositol hexaphosphate, inositol tripyrophosphate, benzabate, urea derivative L35, and vanillin, each with different mechanisms of action. The application of Hb conformational regulators provides new insights into the study of hypoxia oxygen supply issues and the treatment of sickle cell disease.


Subject(s)
Hemoglobins , Oxygen , Protein Conformation , Humans , Oxygen/metabolism , Hemoglobins/metabolism , Hemoglobins/chemistry , Biological Transport , Erythrocytes/metabolism , Phytic Acid/metabolism , Phytic Acid/pharmacology , 2,3-Diphosphoglycerate/metabolism
8.
Heliyon ; 10(12): e32108, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975143

ABSTRACT

Lipopolysaccharide (LPS)-triggered damage in human dental pulp cells (hDPCs) is associated with the progression of gingivitis, which is inflammation of the gingival tissue. Nesfatin-1 is a peptide secreted by neurons and peripheral tissues. Here, we report a novel property of Nesfatin-1 in ameliorating LPS-induced inflammatory response and senescence in hDPCs. First, we demonstrate that Nesfatin-1 repressed LPS-triggered expression of inflammatory factors. Secondly, Nesfatin-1 restored telomerase activity and the expression of human telomerase reverse transcriptase (hTERT) and telomeric repeat binding factor 2 (TERF2) against LPS. Senescence-associated ß-galactosidase (SA-ß-gal) staining assay revealed that Nesfatin-1 attenuated LPS-induced cellular senescence in hDPCs. We also found that Nesfatin-1 increased telomerase activity in LPS-challenged hDPCs. It is also shown that Nesfatin-1 reduced the expression of plasminogen activator inhibitor-1 (PAI-1) and p16. Additionally, LPS stimulation reduced the expression of SIRT1, which was rescued by Nesfatin-1. However, the silencing of sirtuin1 (SIRT1) abrogated the protective property of Nesfatin-1 in preventing cellular senescence, implying that the function of Nesfatin-1 is regulated by SIRT1. Taken together, our findings suggest that Nesfatin-1 might possess a protective effect against gingivitis.

9.
Lancet Planet Health ; 8(7): e506-e514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969477

ABSTRACT

BACKGROUND: High ambient temperature is increasingly common due to climate change and is associated with risk of adverse pregnancy outcomes. Acute lymphoblastic leukaemia is the most common malignancy in children, the incidence is increasing, and in the USA disproportionately affects Latino children. We aimed to investigate the potential association between high ambient temperature in pregnancy and risk of childhood acute lymphoblastic leukaemia. METHODS: We used data from California birth records (children born from Jan 1, 1982, to Dec 31, 2015) and California Cancer Registry (those diagnosed with childhood cancer in California from Jan 1, 1988, to Dec 31, 2015) to identify acute lymphoblastic leukaemia cases diagnosed in infants and children aged 14 years and younger and controls matched by sex, race, ethnicity, and date of last menstrual period. Ambient temperatures were estimated on a 1-km grid. The association between ambient temperature and acute lymphoblastic leukaemia was evaluated per gestational week, restricted to May-September, adjusting for confounders. Bayesian meta-regression was applied to identify critical exposure windows. For sensitivity analyses, we evaluated a 90-day pre-pregnancy period (assuming no direct effect before pregnancy), adjusted for relative humidity and particulate matter less than 2·5 microns in aerodynamic diameter, and constructed an alternatively matched dataset for exposure contrast by seasonality. FINDINGS: 6849 cases of childhood acute lymphoblastic leukaemia were identified and, of these, 6258 had sufficient data for study inclusion. We also included 307 579 matched controls. Most of the study population were male (174 693 [55·7%] of the 313 837 included in the study) and of Latino ethnicity (174 906 [55·7%]). The peak association between ambient temperature and risk of acute lymphoblastic leukaemia was observed in gestational week 8, where a 5°C increase was associated with an odds ratio of 1·07 (95% CI 1·04-1·11). A slightly larger effect was seen among Latino children (OR 1·09 [95% CI 1·04-1·14]) than non-Latino White children (OR 1·05 [1·00-1·11]). The sensitivity analyses supported the results of the main analysis. INTERPRETATION: Our findings suggest an association between high ambient temperature in early pregnancy and risk of childhood acute lymphoblastic leukaemia. Further replication and investigation of mechanistic pathways might inform mitigation strategies. FUNDING: Yale Center on Climate Change and Health, The National Center for Advancing Translational Science, National Institutes of Health.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Female , Pregnancy , Child, Preschool , California/epidemiology , Child , Infant , Male , Adolescent , Hot Temperature/adverse effects , Infant, Newborn , Risk Factors , Hispanic or Latino/statistics & numerical data
10.
Front Plant Sci ; 15: 1374431, 2024.
Article in English | MEDLINE | ID: mdl-39006956

ABSTRACT

Plant-parasitic nematodes (PPNs) are among the most damaging pathogens to host plants. Plants can modulate their associated bacteria to cope with nematode infections. The tritrophic plant-nematode-microbe interactions are highly taxa-dependent, resulting in the effectiveness of nematode agents being variable among different host plants. Ficus tikoua is a versatile plant with high application potential for fruits or medicines. In recent years, a few farmers have attempted to cultivate this species in Sichuan, China, where parasitic nematodes are present. We used 16S rRNA genes to explore the effects of nematode parasitism on root-associated bacteria in this species. Our results revealed that nematode infection had effects on both endophytic bacterial communities and rhizosphere communities in F. tikoua roots, but on different levels. The species richness increased in the rhizosphere bacterial communities of infected individuals, but the community composition remained similar as compared with that of healthy individuals. Nematode infection induces a deterministic assembly process in the endophytic bacterial communities of parasitized organs. Significant taxonomic and functional changes were observed in the endophytic communities of root knots. These changes were characterized by the enrichment of nitrogen-fixing bacteria, including Bradyrhizobium, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and nematode-antagonistic bacteria, such as Pseudonocardia, Pseudomonas, Steroidobacter, Rhizobacter, and Ferrovibrio. Our results would help the understanding of the tritrophic plant-nematode-bacterium interactions in host plants other than dominant crops and vegetables and would provide essential information for successful nematode management when F. tikoua were cultivated on large scales.

11.
Front Plant Sci ; 15: 1392924, 2024.
Article in English | MEDLINE | ID: mdl-39006959

ABSTRACT

Roads are an increasingly prevalent form of human activity that drives the decrease in plant community functions and threatens global biodiversity. However, few studies have focused on the changes in the function and diversity of alpine meadows caused by road infrastructure in the Tibetan Plateau. In this study, the changes in species diversity, functional diversity, and community stability were examined at different distances from the Qinghai-Tibet highway. The results showed that the road intensified the degradation of vegetation, which significantly altered species diversity and community structure. This effect gradually decreased from near to far from the highway. Plant community cover and species diversity were highest at intermediate distances (50-100 m) from the roadway; species diversity and stability were lowest in the grassland most disturbed by the road (0 m), and species diversity and functional diversity tended to stabilize farther away from the road (250 m). Our findings indicate that changes in species diversity are synchronized with changes in functional diversity, which largely determines the outcome of degraded grassland community diversity and stability. Our results provide a reference point for restoring degraded alpine areas and mitigating the ecological impacts of roads.

12.
J Hazard Mater ; 476: 134741, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38991640

ABSTRACT

Exposure to environmental BaP or its metabolite BPDE causes trophoblast cell dysfunctions to induce miscarriage (abnormal early embryo loss), which might be generally regulated by lncRNAs. IL1B, a critical inflammatory cytokine, is closely associated with adverse pregnancy outcomes. However, whether IL1B might cause dysfunctions of BaP/BPDE-exposed trophoblast cells to induce miscarriage, as well as its specific epigenetic regulatory mechanisms, is completely unexplored. In this study, we find that BPDE-DNA adducts, trophoblast cell dysfunctions, and miscarriage are closely associated. Moreover, we also identify a novel lnc-HZ06 and IL1B, both of which are highly expressed in BPDE-exposed trophoblast cells, in villous tissues of recurrent miscarriage patients, and in placental tissues of BaP-exposed mice with miscarriage. Both lnc-HZ06 and IL1B suppress trophoblast cell migration/invasion and increase apoptosis. In mechanism, lnc-HZ06 promotes STAT4-mediated IL1B mRNA transcription, enhances IL1B mRNA stability by promoting the formation of METTL3/HuR/IL1B mRNA ternary complex, and finally up-regulates IL1B expression levels. BPDE exposure promotes TBP-mediated lnc-HZ06 transcription, and thus up-regulates IL1B levels. Knockdown of either murine lnc-hz06 (which down-regulates Il1b levels) or murine Il1b could alleviate miscarriage in BaP-exposed mice. Collectively, this study not only discovers novel biological mechanisms and pathogenesis of unexplained miscarriage but also provides novel potential targets for treatment against BaP/BPDE-induced miscarriage.

13.
Sci Immunol ; 9(97): eadm7908, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996009

ABSTRACT

Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that Escherichia coli infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in Drosophila and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-ß (Aß42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.


Subject(s)
Brain , COVID-19 , Muscle, Skeletal , Signal Transduction , Animals , Brain/immunology , Brain/metabolism , Signal Transduction/immunology , Mice , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , COVID-19/immunology , Chronic Disease , Interleukin-6/metabolism , Interleukin-6/immunology , Escherichia coli Infections/immunology , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/immunology , Drosophila Proteins/metabolism , Drosophila Proteins/immunology , Drosophila Proteins/genetics , SARS-CoV-2/immunology , Drosophila melanogaster/immunology , Amyloid beta-Peptides/metabolism , Humans , Mice, Inbred C57BL
14.
Clin Rheumatol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990379

ABSTRACT

IgG4-related diseases (IgG-RDs) are a group of fibroinflammatory diseases that affect a variety of tissues, resulting in tumour-like effects and/or organ dysfunction. Monoclonal gammopathies (MGPs) are a group of disorders characterized by clonal proliferation of plasma cells or lymphoid cells resulting in the secretion of a monoclonal immunoglobulin. Cases of MGPs in IgG4-RDs coexisting with plasma cell dyscrasias and lymphoid neoplasms have been reported over the past few years. Therefore, the results of examinations of M protein in IgG4-RD patients should be interpreted with caution. Herein, we report the case of a 58-year-old male with a history of type 2 diabetes who presented with submandibular masses, anosmia, swollen lymph nodes, proteinuria, and renal impairment. Laboratory tests revealed hyperglobulinemia and elevated levels of IgG4 (124 g/L) and serum-free light chains (sFLCs). Serum protein electrophoresis (SPEP) revealed an M spike of 5.6 g/dL, and immunofixation electrophoresis (IPE) revealed biclonal IgG-κ and IgG-λ. The patient underwent bone marrow, lymph node, and kidney biopsy, which ruled out plasma cell disorders and lymphoma. He was finally diagnosed with an IgG4-RD comorbid with diabetic nephropathy. The findings in this case highlight that significant activation of B cells in IgG4-RD patients, especially those with multiorgan involvement can lead to significant hyperglobulinemia and high sFLC and IgG4 levels, which are more pronounced in the setting of renal impairment. Relatively high concentrations of polyclonal IgG4 can give rise to a focal band bridging the ß and γ fractions, which may mimic the appearance of a monoclonal band on SPEP and monoclonal gammaglobulinemia in IFE. The patient experienced considerable improvement in his symptoms after rituximab combined with glucocorticoid therapy, and a monoclonal immunoglobulin was not detected.

15.
Clin Exp Immunol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990891

ABSTRACT

Growing evidence suggests that systemic immune and inflammatory responses may play a critical role in the formation and development of aneurysms. Exploring the differences between single intracranial aneurysm (SIA) and multiple IAs (MIAs) could provide insights for targeted therapies. However, there is a lack of comprehensive and detailed characterization of changes in circulating immune cells in MIAs. Peripheral blood mononuclear cell (PBMC) samples from patients with SIA (n = 16) or MIAs (n = 6) were analyzed using high-dimensional mass cytometry to evaluate the frequency and phenotype of immune cell subtypes. A total of 25 cell clusters were identified, revealing that the immune signature of MIAs included cluster changes. Compared to patients with SIA, patients with MIAs exhibited immune dysfunction and regulatory imbalance in T-cell clusters. They also had reduced numbers of CD8+ T cells and their subgroups CD8+ Te and CD8+ Tem cells, as well as reduced numbers of the CD4+ T-cell subgroup CD27-CD4+ Tem cells. Furthermore, compared to SIA, MIAs were associated with enhanced T-cell immune activation, with elevated expression levels of CD3, CD25, CD27, CCR7, GP130, and interleukin 10. This study provides insights into the circulating immune cell profiles in patients with MIAs, highlighting the similarities and differences between patients with SIA and those with MIAs. Furthermore, the study suggests that circulating immune dysfunction may contribute to development of MIAs.

16.
Inorg Chem ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993045

ABSTRACT

Double perovskites, a class of ceramic oxides with unique crystal structures and diverse physical properties, show promise for various technological applications including solar cells, photodetectors, and light-emitting diodes (LEDs). Despite limited research on rare earth-doped double perovskites, leveraging their ultrahigh luminous efficiency to achieve bright yellow LED emission and addressing energy transfer challenges between Yb3+ and Nd3+ ions in double perovskite La2ZnTiO6 with moderate phonon energy are explored in this work. Through phonon-assisted energy transfer, an ultrasensitive optical thermometer covering a wide temperature range is developed by utilizing the different temperature responses of Er3+ emission in the visible light region and Nd3+ emission in the near-infrared region based on the luminescence intensity ratio (LIR). All the results demonstrate that the rare earth (Yb-Er, Yb-Nd, and Yb-Nd-Er)-doped La2ZnTiO6 phosphors can be effectively utilized for ultrabright LED illumination and ultrahigh sensitivity self-calibrated temperature sensing. This research underscores the significance of phonon-assisted energy transfer in improving material properties and provides valuable insights for the advancement of multifunctional materials.

17.
Phytomedicine ; 132: 155861, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39024672

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is one of the most serious complications of diabetes which leads to end-stage renal failure and approximately one-third of patients need dialysis. There is still a lack of effective and specific treatment for DN. Searching new drugs from natural foods is an alternative approach to treat diabetes and its complications. Hong Guo Ginseng Guo (HGGG), a berry with palatability and nutritional benefits, has exhibited medicinal properties to mitigate the progression of DN. PURPOSE: This study investigates the effects of HGGG on streptozotocin (STZ)-induced diabetic nephropathy (DN) in rats and elucidates the mechanisms underlying its reno-protective and diabetes management benefits. METHODS: The LC-MS spectra method identified the primary ingredients in HGGG. To induce DN, male Sprague-Dawley (SD) rats received a single intraperitoneal injection of 75 mg/kg STZ. Over an eight-week treatment period, we assessed biochemical parameters including blood glucose, urine albumin-to-creatinine ratio (UACR), blood urea nitrogen (BUN), and urine N-acetyl-beta-d-glucosaminidase (NAG). Tissue pathology was examined using Masson's trichrome, Periodic Acid-Schiff (PAS), and Hematoxylin-Eosin (H&E) stains. We analyzed pro-inflammatory mediators and tissue fibrosis extent using Western blotting and immunohistochemistry. Gut microbiota composition was characterized via 16S rDNA sequencing. RESULTS: Seventeen chemical compounds were identified, with lobetyolin, luteolin, and rutin highlighted as the primary active elements. HGGG extract appeared to confer renal protection, demonstrated by improvements in UACR, BUN, and urine NAG levels. The reno protective effects in HGGG-treated DN rats were linked to reduced renal fibrosis and inhibition of the NLRP3 inflammasome. Additionally, HGGG administration improved gut barrier integrity and altered the gut microbiota in DN rats, increasing the relative abundance of beneficial bacteria known for regulating polyamines and producing short-chain fatty acids (SCFAs), including Ruminococcus, Barnesiella_sp, Anaerovoracaceae, and Prevotellaceae_NK3B31. Meanwhile, treatment with HGGG decreasing the presence of Oscillospira, potential pathogens responsible for producing lipopolysaccharide (LPS). CONCLUSION: HGGG has potential as a beneficial fruit for managing diabetes and its associated complications through modulation of the gut microbiota.

18.
Neural Netw ; 179: 106520, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39024709

ABSTRACT

Unsupervised representation learning (URL) is still lack of a reasonable operator (e.g. convolution kernel) for exploring meaningful structural information from generic data including vector, image and tabular data. In this paper, we propose a simple end-to-end T-distributed Stochastic Neighbor Network (TsNet) for URL with clustering downstream task. Concretely, our TsNet model has three major components: (1) an adaptive connectivity distribution learning module is presented to construct a pairwise graph for preserving the local structure of generic data; (2) a T-distributed stochastic neighbor embedding based loss function is designed to learn a transformation between embeddings and original data, which improves the discrimination of representations; (3) a nonlinear parametric mapping is learned via our TsNet on an unsupervised generalized manner, which can address the "out-of-sample" issue. By combining these components, our method is able to considerably outperform previous related unsupervised learning approaches on visualization and clustering of generic data. A simple deep neural network equipped on our model respectively achieves 74.90%, 76.56% ACC and NMI, which is 8% relative improvement over previous state-of-the-art on real single-cell RNA-sequencing (scRNA-seq) datasets clustering.

19.
Reprod Sci ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026051

ABSTRACT

To retrospectively analyze the fertility outcomes and prognosis of gestational trophoblastic disease (GTD) patients, providing a basis for targeted fertility guidance and counseling. 82 GTD patients of childbearing age who received treatment at the Obstetrics and Gynecology Department of Lanzhou University First Hospital from January 2016 to January 2023 were stratified into re-pregnancy (n = 20) and non-re-pregnancy (n = 33) cohorts based on their pregnancy outcomes. The impacts of various factors on pregnancy outcomes were subsequently evaluated, encompassing the rates of subsequent pregnancies, live births, miscarriages, ectopic pregnancies, and ongoing pregnancies. Finally, logistics regression model was employed to analyze the risk factors affecting re-pregnancy in GTD patients. The study delineated those patients with different GTD pathologies had varying re-pregnancy rates (mole, erosive mole and choriocarcinoma accounted for 66.04%, 30.19% and 3.77%, respectively). Treatment predominantly involved uterine curettage, with fewer cases receiving chemotherapy alone or in conjunction with curettage accounted for 67.92%, 5.66%, and 26.42%, respectively. The average chemotherapy frequency was 4.59 ± 2.43 sessions, and a majority sought reproductive counseling. Re-pregnancy occurred in 37.74% of patients. The live birth rate was 65.00%, with miscarriage and ectopic pregnancy rates at 25.00% and 5.00% respectively. Logistic regression analysis pinpointed the absence of pre-pregnancy counseling as a significant independent risk factor for re-pregnancy in GTD patients (p < 0.05). While chemotherapy may influence ovarian function, with the majority of patients desiring children post-recovery, pregnancy rates remain high. Fertility counseling significantly enhances re-pregnancy success rates in GTD survivors, emphasizing its recommendation for those aiming to conceive post-recovery.

20.
Phys Chem Chem Phys ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39015083

ABSTRACT

CsCu2I3 is a popular lead-free metal halide perovskite with good thermal and air stability. To facilitate its applications in optoelectronics, Ag doping and high pressure are employed in this work to improve the optoelectronic properties of CsCu2I3. Using first-principles calculations and experiments, the structural phase change of 10% Ag-doped CsCu2I3 is found to occur at about 4.0 GPa. This reveals the regulation of band structures by hydrostatic pressure. In addition, the high pressure not only increases the emission energy of photoluminescence of 10% Ag-doped CsCu2I3 by more than 0.2 eV, but also increases the emission intensity by multiple times. Finally, the origin of luminescence in 10% Ag-doped CsCu2I3 is attributed to the I vacancies. This work provides insight into the structure and optoelectronic properties of 10% Ag-doped CsCu2I3, and offers significant guidance for the design and manufacturing of future luminescence devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...