Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 67(21): 6149-6159, 2016 11.
Article in English | MEDLINE | ID: mdl-27811082

ABSTRACT

Although lanthanum (La) has been used as an agricultural plant growth stimulant for approximately 50 years, high concentrations are toxic to plants. Despite significant advances in recent years, the mechanisms underlying the effects of La on root system development remain unclear. Here, we report that a high concentration of La inhibits primary root (PR) elongation and induces lateral root (LR) development. La results in cell death in PR tips, thereby leading to the loss of meristematic cell division potential, stem cell niche activity, and auxin distribution in PR tips. Further analysis indicated that La induces reactive oxygen species (ROS) over-accumulation in PR tips. Reduction in ROS accumulation partially alleviated the inhibitory effects of La on PR elongation by improving cell survival in PR tips and thereby improving meristematic cell division potential and auxin distribution in PR tips. We also found ROS to be involved in La-induced endocytosis. Genetic analyses supported the described phenotype. Overall, our results indicate that La affects root growth, at least partially, by modulating ROS levels in roots to induce cell death in PR tips and subsequent auxin redistribution in roots, leading to remodeling of the root system architecture.


Subject(s)
Lanthanum/pharmacology , Plant Roots/drug effects , Reactive Oxygen Species/metabolism , Cell Death/drug effects , Cell Division/drug effects , Indoleacetic Acids/metabolism , Meristem/drug effects , Meristem/growth & development , Plant Growth Regulators/metabolism , Plant Roots/growth & development
2.
Plant Sci ; 181(6): 696-700, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21958712

ABSTRACT

Jatropha curcas is considered a potential biodiesel feedstock plant whose seeds contain up to 40% oil. However, little is currently known about the seed biology of Jatropha. Therefore, it would be valuable to understand the mechanisms of development and lipid metabolism in Jatropha seeds. In the present study, three cDNA libraries were constructed with mRNA from Jatropha embryos at different stages of seed development. A total of 9844 expressed sequence tags (ESTs) were produced from these libraries, from which 1070 contigs and 3595 singletons were obtained. One hundred and seven unigenes were found to be differentially expressed in the three cDNA libraries of Jatropha embryos, indicating that these genes may play key roles in seed development. We have identified 59 and 61 unigenes that might be involved in the development and lipid metabolism in Jatropha seeds, respectively. Some of these genes may also play important roles in embryogenesis, morphogenesis, defense response and adaptive mechanisms in plants.


Subject(s)
Expressed Sequence Tags , Genes, Plant , Jatropha/physiology , Lipid Metabolism , Seeds/growth & development , Biofuels , Gene Library , Seeds/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...