Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 90(3): e0190023, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38334408

ABSTRACT

Endosymbiosis is a widespread and important phenomenon requiring diverse model systems. Ciliates are a widespread group of protists that often form symbioses with diverse microorganisms. Endosymbioses between the ciliate Euplotes and heritable bacterial symbionts are common in nature, and four essential symbionts were described: Polynucleobacter necessarius, "Candidatus Protistobacter heckmanni," "Ca. Devosia symbiotica," and "Ca. Devosia euplotis." Among them, only the genus Polynucleobacter comprises very close free-living and symbiotic representatives, which makes it an excellent model for investigating symbiont replacements and recent symbioses. In this article, we characterized a novel endosymbiont inhabiting the cytoplasm of Euplotes octocarinatus and found that it is a close relative of the free-living bacterium Fluviibacter phosphoraccumulans (Betaproteobacteria and Rhodocyclales). We present the complete genome sequence and annotation of the symbiotic Fluviibacter. Comparative analyses indicate that the genome of symbiotic Fluviibacter is small in size and rich in pseudogenes when compared with free-living strains, which seems to fit the prediction for recently established endosymbionts undergoing genome erosion. Further comparative analysis revealed reduced metabolic capacities in symbiotic Fluviibacter, which implies that the symbiont relies on the host Euplotes for carbon sources, organic nitrogen and sulfur, and some cofactors. We also estimated substitution rates between symbiotic and free-living Fluviibacter pairs for 233 genes; the results showed that symbiotic Fluviibacter displays higher dN/dS mean value than free-living relatives, which suggested that genetic drift is the main driving force behind molecular evolution in endosymbionts. IMPORTANCE: In the long history of symbiosis research, most studies focused mainly on organelles or bacteria within multicellular hosts. The single-celled protists receive little attention despite harboring an immense diversity of symbiotic associations with bacteria and archaea. One subgroup of the ciliate Euplotes species is strictly dependent on essential symbionts for survival and has emerged as a valuable model for understanding symbiont replacements and recent symbioses. However, almost all of our knowledge about the evolution and functions of Euplotes symbioses comes from the Euplotes-Polynucleobacter system. In this article, we report a novel essential symbiont, which also has very close free-living relatives. Genome analysis indicated that it is a recently established endosymbiont undergoing genome erosion and relies on the Euplotes host for many essential molecules. Our results provide support for the notion that essential symbionts of the ciliate Euplotes evolve from free-living progenitors in the natural water environment.


Subject(s)
Betaproteobacteria , Euplotes , Phylogeny , Symbiosis/genetics , Euplotes/genetics , Euplotes/microbiology , Betaproteobacteria/genetics , Bacteria/genetics , Genome, Bacterial , Genomics
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339043

ABSTRACT

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.


Subject(s)
Frameshifting, Ribosomal , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spermidine/metabolism , Putrescine/metabolism , Retroelements/genetics , Codon, Terminator/genetics , Codon, Terminator/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism
3.
Int J Biol Macromol ; 254(Pt 1): 127743, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287569

ABSTRACT

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The single-celled eukaryote Euplotes exhibit high frequency of PRF. However, the molecular mechanism of modulating Euplotes PRF remains largely unknown. Here, we identified two novel eIF5A genes, eIF5A1 and eIF5A2, in Euplotes octocarinatus and found that the Eo-eIF5A2 gene requires a -1 PRF to produce complete protein product. Although both Eo-eIF5As showed significant structural similarity with yeast eIF5A, neither of them could functionally replace yeast eIF5A. Eo-eIF5A knockdown inhibited +1 PRF of the η-tubulin gene. Using an in vitro reconstituted translation system, we found that hypusinated Eo-eIF5A (Eo-eIF5AH) can promote +1 PRF at the canonical AAA_UAA frameshifting site of Euplotes. The results showed eIF5A is a novel trans-regulator of PRF in Euplotes and has an evolutionary conserved role in regulating +1 PRF in eukaryotes.


Subject(s)
Euplotes , Frameshifting, Ribosomal , Frameshifting, Ribosomal/genetics , Euplotes/genetics , Euplotes/metabolism , Saccharomyces cerevisiae/genetics
4.
J Eukaryot Microbiol ; 70(2): e12945, 2023 03.
Article in English | MEDLINE | ID: mdl-36039907

ABSTRACT

Our knowledge of ciliate endosymbiont diversity greatly expanded over the past decades due to the development of characterization methods for uncultivable bacteria. Chlamydia-like bacteria have been described as symbionts of free-living amoebae and other phylogenetically diverse eukaryotic hosts. In the present work, a systematic survey of the bacterial diversity associated with the ciliate Euplotes octocarinatus strain Zam5b-1 was performed, using metagenomic screening as well as classical full-cycle rRNA approach, and a novel chlamydial symbiont was characterized. The metagenomic screening revealed 16S rRNA gene sequences from Polynucleobacter necessarius, three previously reported accessory symbionts, and a novel chlamydia-like bacterium. Following the full-cycle rRNA approach, we obtained the full-length 16S rRNA gene sequence of this chlamydia-like bacterium and developed probes for diagnostic fluorescence in situ hybridizations. The phylogenetic analysis of the 16S rRNA gene sequences unambiguously places the new bacterium in the family Rhabdochlamydiaceae. This is the first report of chlamydia-like bacterium being found in Euplotes. Based on the obtained data, the bacterium is proposed as a new candidate genus and species: "Candidatus Euplotechlamydia quinta."


Subject(s)
Chlamydia , Ciliophora , Euplotes , Phylogeny , Euplotes/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Chlamydia/genetics , Ciliophora/genetics , Symbiosis , Sequence Analysis, DNA
5.
J Eukaryot Microbiol ; 67(1): 144-149, 2020 01.
Article in English | MEDLINE | ID: mdl-31419839

ABSTRACT

The ciliate Euplotes deviates from the universal genetic code by translating UGA as cysteine and using UAA and UAG as the termination codon. Here, we cloned and sequenced the Cathepsin B gene of Euplotes octocarinatus (Eo-CTSB) which containing several in-frame stop codons throughout the coding sequence. We provide evidences, based on 3'-RACE method and Western blot, that the Eo-CTSB gene is actively expressed. Comparison of the derived amino acid sequence with the homologs in other eukaryotes revealed that UAA and UAG may code for glutamine in Eo-CTSB. These findings imply an evolutionary complexity of stop codon reassignment in eukaryotes.


Subject(s)
Cathepsin B/genetics , Euplotes/genetics , Protozoan Proteins/genetics , Amino Acid Sequence , Base Sequence , Cathepsin B/metabolism , Codon, Terminator , Euplotes/enzymology , Euplotes/metabolism , Protozoan Proteins/metabolism , Sequence Alignment
6.
BMC Genomics ; 19(1): 63, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29351734

ABSTRACT

BACKGROUND: Euplotes, a ciliated protozoan, is a useful unicellular model organism. Studies on Euplotes have provided excellent insights into various basic biological principles. We have recently sequenced the macronuclear genome of the common freshwater species Euplotes octocarinatus to provide novel insights into Euplotes genetics and molecular biology. RESULTS: In this study, we present the E. octocarinatus Genome Database (EOGD), a functional annotation and analysis platform for the global study of the Euplotes genome. EOGD includes macronuclear genomic and transcriptomic data, predicted gene models, coding sequences, protein sequences, and functional annotations. The GBrowser and BLAST tools are embedded in EOGD to enable the search, visualization and analysis of E. octocarinatus genomic and transcriptomic data. CONCLUSIONS: EOGD is a useful resource for the research community, particularly for researchers who conduct genome-scale analysis and molecular biology studies of Euplotes or other ciliates. EOGD will be continuously updated to integrate more datasets and analytical tools. EOGD is freely available at http://ciliates.ihb.ac.cn/database/home/#eo .


Subject(s)
Databases, Genetic , Euplotes/genetics , Genome , Gene Expression Profiling
7.
Biosci Biotechnol Biochem ; 81(7): 1327-1334, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28317463

ABSTRACT

Analysis of transcriptome revealed that a membrane occupation and recognition nexus (MORN) repeat protein-encoding gene of Euplotes octocarinatus (Eo-morn-9-31) was a candidate for programmed +1 ribosomal frameshifting (+1 PRF). In this study, a dual-luciferase assay was performed to detect its expression. The result showed that the MORN repeat protein (Eo-MORN-9-31) could be produced by the +1 PRF event during the process of translation in yeast and the frameshifting efficiency was about 4-5%. We further confirmed its reality by western blot and mass spectrometry. This study provided experimental evidence indicating that the expression of the Eo-MORN-9-31 of E. octocarinatus required the +1 PRF.


Subject(s)
Euplotes/genetics , Frameshifting, Ribosomal , Nuclear Proteins/genetics , Protein Biosynthesis , Protozoan Proteins/genetics , Repetitive Sequences, Amino Acid , Base Sequence , Biological Assay , Cloning, Molecular , Euplotes/metabolism , Gene Expression Regulation , Genes, Reporter , Luciferases/genetics , Luciferases/metabolism , Mass Spectrometry , Nuclear Proteins/metabolism , Plasmids/chemistry , Plasmids/metabolism , Protozoan Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transcriptome
8.
Sci Rep ; 6: 33020, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27597422

ABSTRACT

Programmed ribosomal frameshifting (PRF) is commonly used to express many viral and some cellular genes. We conducted a genome-wide investigation of +1 PRF in ciliate Euplotes octocarinatus through genome and transcriptome sequencing and our results demonstrated that approximately 11.4% of genes require +1 PRF to produce complete gene products. While nucleic acid-based evidence for candidate genes with +1 PRF is strong, only very limited information is available at protein levels to date. In this study, E. octocarinatus was subjected to large-scale mass spectrometry-based analysis to verify the high frequency of +1 PRF and 226 +1 PRF gene products were identified. Based on the amino acid sequences of the peptides spanning the frameshift sites, typical frameshift motif AAA-UAR for +1 PRF in Euplotes was identified. Our data in this study provide very useful insight into the understanding of the molecular mechanism of +1 PRF.


Subject(s)
Euplotes/genetics , Frameshifting, Ribosomal , Mass Spectrometry/methods , Protozoan Proteins/genetics , Gene Expression Profiling/methods , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods
9.
Sci Rep ; 6: 21139, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26891713

ABSTRACT

Programmed -1 ribosomal frameshifting (-1 PRF) has been identified as a mechanism to regulate the expression of many viral genes and some cellular genes. The slippery site of -1 PRF has been well characterized, whereas the +1 PRF signal and the mechanism involved in +1 PRF remain poorly understood. Previous study confirmed that +1 PRF is required for the synthesis of protein products in several genes of ciliates from the genus Euplotes. To accurately assess the frequency of genes requiring frameshift in Euplotes, the macronuclear genome and transcriptome of Euplotes octocarinatus were analyzed in this study. A total of 3,700 +1 PRF candidate genes were identified from 32,353 transcripts, and the gene products of these putative +1 PRFs were mainly identified as protein kinases. Furthermore, we reported a putative suppressor tRNA of UAA which may provide new insights into the mechanism of +1 PRF in euplotids. For the first time, our transcriptome-wide survey of +1 PRF in E. octocarinatus provided a dataset which serves as a valuable resource for the future understanding of the mechanism underlying +1 PRF.


Subject(s)
Euplotes/genetics , Frameshifting, Ribosomal , Gene Expression Regulation , Reading Frames , Base Sequence , Codon, Terminator , Computational Biology/methods , Conserved Sequence , Euplotes/metabolism , Gene Expression Profiling , Genome, Protozoan , High-Throughput Nucleotide Sequencing , Nucleic Acid Conformation , Position-Specific Scoring Matrices , Protein Kinases/genetics , Protein Kinases/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...