Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cereb Cortex ; 33(13): 8510-8522, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37118887

ABSTRACT

The human visual system can efficiently extract distinct physical, biological, and social attributes (e.g. facing direction, gender, and emotional state) from biological motion (BM), but how these attributes are encoded in the brain remains largely unknown. In the current study, we used functional magnetic resonance imaging to investigate this issue when participants viewed multidimensional BM stimuli. Using multiple regression representational similarity analysis, we identified distributed brain areas, respectively, related to the processing of facing direction, gender, and emotional state conveyed by BM. These brain areas are governed by a hierarchical structure in which the respective neural encoding of facing direction, gender, and emotional state is modulated by each other in descending order. We further revealed that a portion of the brain areas identified in representational similarity analysis was specific to the neural encoding of each attribute and correlated with the corresponding behavioral results. These findings unravel the brain networks for encoding BM attributes in consideration of their interactions, and highlight that the processing of multidimensional BM attributes is recurrently interactive.


Subject(s)
Brain , Motion Perception , Humans , Brain/diagnostic imaging , Brain Mapping/methods , Emotions , Magnetic Resonance Imaging , Photic Stimulation/methods
2.
Cereb Cortex ; 32(2): 439-453, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34255827

ABSTRACT

The brain networks undergo functional reorganization across the whole lifespan, but the dynamic patterns behind the reorganization remain largely unclear. This study models the dynamics of spontaneous activity of large-scale networks using hidden Markov model (HMM), and investigates how it changes with age on two adult lifespan datasets of 176/157 subjects (aged 20-80 years). Results for both datasets showed that 1) older adults tended to spend less time on a state where default mode network (DMN) and attentional networks show antagonistic activity, 2) older adults spent more time on a "baseline" state with moderate-level activation of all networks, accompanied with lower transition probabilities from this state to the others and higher transition probabilities from the others to this state, and 3) HMM exhibited higher sensitivity in uncovering the age effects compared with temporal clustering method. Our results suggest that the aging brain is characterized by the shortening of the antagonistic instances between DMN and attention systems, as well as the prolongation of the inactive period of all networks, which might reflect the shift of the dynamical working point near criticality in older adults.


Subject(s)
Longevity , Nerve Net , Adult , Aged , Aged, 80 and over , Brain/physiology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Nerve Net/physiology , Young Adult
3.
Bioconjug Chem ; 32(8): 1926-1934, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34329559

ABSTRACT

Developing peptide tags that can bind target proteins covalently under mild conditions is of great importance for a myriad of applications, ranging from chemical biology to biotechnology. Here we report the development of a small covalent peptide tag system, termed as GB tags, that can covalently label the target protein with high specificity and high yield under oxidizing conditions. The GB tags consist of a pair of short peptides, GN and GC (GN contains 45 residues and GC contains 19 residues). GN and GC, which are split from a parent protein GB1, can undergo protein fragment reconstitution to reconstitute the folded structure of the parent protein spontaneously. The engineered cysteines in GN and GC can readily form a disulfide bond oxidized by air oxygen after protein reconstitution. Using thermally stable variants of GB1, we identified two pairs of GB tags that display improved thermodynamic stability and binding affinity. They can serve as efficient covalent peptide tags for various applications, including specific labeling of mammalian cell surface receptors. We anticipate that these new GB tags will find applications in biochemical labeling as well as biomaterials, such as protein hydrogels.


Subject(s)
Peptides/chemistry , Amino Acid Sequence , Animals , Biophysical Phenomena , CHO Cells , Cricetinae , Cricetulus , Epidermal Growth Factor/administration & dosage , Epidermal Growth Factor/chemistry , Epidermal Growth Factor/metabolism , Fluorescent Dyes/chemistry , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Folding , Thermodynamics
4.
Chem Commun (Camb) ; 55(84): 12703-12706, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31588464

ABSTRACT

Utilizing protein fragment reconstitution, we demonstrate the reversible and repeatable functionalization of protein hydrogels. This novel method enables the presentation and release of functional protein ligands on protein hydrogels.


Subject(s)
Bacterial Proteins/chemistry , Drug Carriers/chemistry , Green Fluorescent Proteins/chemistry , Hydrogels/chemistry , Peptide Fragments/chemistry , Cell Line , Cell Survival/drug effects , Cysteine/chemistry , Drug Liberation , Fibroblasts/cytology , Humans , Ligands , Lung/cytology , Oxidation-Reduction , Protein Binding , Sulfhydryl Compounds/chemistry , Surface Properties , Thermodynamics
5.
Front Hum Neurosci ; 13: 199, 2019.
Article in English | MEDLINE | ID: mdl-31263405

ABSTRACT

A comparison of the different types of resting state reveals some interesting characteristics of spontaneous brain activity that cannot be found in a single condition. Differences in the amplitude of low-frequency fluctuation (ALFF) between the eyes open (EO) and the eyes closed (EC) almost have a spatially distinct pattern with traditional EO-EC activation within sensory systems, suggesting the divergent functional roles of ALFF and activation. However, the underlying mechanism is far from clear. Since the thalamus plays an essential role in sensory processing, one critical step toward understanding the divergences is to depict the relationships between the thalamus and the ALFF modulation in sensory regions. In this preliminary study, we examined the association between the changes of ALFF and the changes of thalamic functional connectivity (FC) between EO and EC. We focused on two visual thalamic nuclei, the lateral geniculate nucleus (LGN) and the pulvinar (Pu). FC results showed that LGN had stronger synchronization with regions in lateral but not in medial visual networks, while Pu had a weaker synchronization with auditory and sensorimotor areas during EO compared with EC. Moreover, the patterns of FC modulation exhibited considerable overlaps with the ALFF modulation, and there were significant correlations between them across subjects. Our findings support the crucial role of the thalamus in amplitude modulation of low-frequency spontaneous activity in sensory systems, and may pave the way to elucidate the mechanisms governing distinction between evoked activation and modulation of low-frequency spontaneous brain activity.

6.
Chem Sci ; 10(40): 9277-9284, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-32055313

ABSTRACT

The giant muscle protein titin is the largest protein in cells and responsible for the passive elasticity of muscles. Titin, made of hundreds of individually folded globular domains, is a protein polymer with folded globular domains as its macromonomers. Due to titin's ultrahigh molecular weight, it has been challenging to engineer high molecular weight artificial protein polymers that mimic titin. Taking advantage of protein fragment reconstitution (PFR) of a small protein GB1, which can be reconstituted from its two split fragments GN and GC, here we report the development of an efficient, PFR-based supramolecular polymerization strategy to engineer protein polymers with ultrahigh molecular weight. We found that the engineered bifunctional protein macromonomers (GC-macromonomer-GN) can undergo supramolecular polymerization, in a way similar to condensation polymerization, via the reconstitution of GN and GC to produce protein polymers with ultrahigh molecular weight (with an average molecular weight of 0.5 MDa). Such high molecular weight linear protein polymers closely mimic titin and provide protein polymer building blocks for the construction of biomaterials with improved physical and mechanical properties.

7.
Front Neurosci ; 12: 516, 2018.
Article in English | MEDLINE | ID: mdl-30108478

ABSTRACT

Recent BOLD-fMRI studies have revealed spatial distinction between variability- and mean-based between-condition differences, suggesting that BOLD variability could offer complementary and even orthogonal views of brain function with traditional activation. However, these findings were mainly observed in block-designed fMRI studies. As block design may not be appreciate for characterizing the low-frequency dynamics of BOLD signal, the evidences suggesting the distinction between BOLD variability and mean are less convincing. Based on the high reproducibility of signal variability modulation between continuous eyes-open (EO) and eyes-closed (EC) states, here we employed EO/EC paradigm and BOLD-fMRI to compare variability- and mean-based EO/EC differences while the subjects were in light. The comparisons were made both on block-designed and continuous EO/EC data. Our results demonstrated that the spatial patterns of variability- and mean-based EO/EC differences were largely distinct with each other, both for block-designed and continuous data. For continuous data, increases of BOLD variability were found in secondary visual cortex and decreases were mainly in primary auditory cortex, primary sensorimotor cortex and medial nuclei of thalamus, whereas no significant mean-based differences were observed. For the block-designed data, the pattern of increased variability resembled that of continuous data and the negative regions were restricted to medial thalamus and a few clusters in auditory and sensorimotor networks, whereas activation regions were mainly located in primary visual cortex and lateral nuclei of thalamus. Furthermore, with the expanding window analyses we found variability results of continuous data exhibited a rather slower dynamical process than typically considered for task activation, suggesting block design is less optimal than continuous design in characterizing BOLD variability. In sum, we provided more solid evidences that variability-based modulation could represent orthogonal views of brain function with traditional mean-based activation.

8.
J Mater Chem B ; 6(1): 75-83, 2018 Jan 07.
Article in English | MEDLINE | ID: mdl-32254195

ABSTRACT

Precise self-assembly of proteins with structural heterogeneity, flexibility, and complexity into programmed arrays to mimic the exquisite architectures created by Nature is a great challenge for the development of protein-based functional nanomaterials. Herein, we present a strategy that integrates light stimuli and covalent coupling to prepare size-tunable two-dimensional (2D) protein nanostructures by remote photocontrol. Using Ru(bpy)3 2+ as a photosensitizer, stable protein one (SP1) was redesigned and self-assembled into nanosheets in the presence of ammonium persulfate (APS) through a rapid and efficient oxidative protein crosslinking reaction. In the design, only a serine-to-tyrosine mutation at position 98 was introduced into SP1 by combining computer simulation and genetic engineering for specific covalent coupling under white light illumination. The chemical and topographical specificities of the photosensitized crosslinking reaction allow control of the direction of protein assembly to form extended 2D nanosheets, which are packed in an orderly manner along the lateral surface of ring-shaped SP1S98Y. Notably, the growth of SP1 nanosheets exhibited isotropical characteristics and can be dynamically mediated by illumination time to achieve precise control of the size of the assembled architectures. The subsequent heat treatment further revealed the excellent thermostability of the 2D periodic SP1 nanostructures, which may find promising applications in the fabrication of various nanobiomaterials after functionalization. The present work demonstrates that the visible light-triggered crosslinking strategy is a facile and environmentally friendly method for constructing advanced protein architectures through hierarchical self-assembly.

9.
Chem Commun (Camb) ; 53(76): 10532-10535, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28890970

ABSTRACT

A novel exploration utilizing a well-designed fusion protein containing a redox stimuli-responsive domain was developed to construct dynamic protein self-assemblies induced by cucurbit[8]uril-based supramolecular interactions. The reversible interconversion of the morphology of the assemblies between nanowires and nanorings was regulated precisely by redox conditions.


Subject(s)
Bridged-Ring Compounds/chemistry , Glutathione Transferase/chemistry , Imidazoles/chemistry , Protein Folding , Recombinant Fusion Proteins/chemical synthesis , Glutathione Transferase/metabolism , Nanowires/chemistry , Oxidation-Reduction , Protein Unfolding , Recombinant Fusion Proteins/chemistry
10.
J Phys Chem Lett ; 8(17): 3970-3979, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28792224

ABSTRACT

DNA plays an important role in the process of protein assembly. DNA viruses such as the M13 virus are typical examples in which single DNA genomes behave as templates to induce the assembly of multiple major coat protein (PVIII) monomers. Thus, the design of protein assemblies based on DNA templates attracts much interest in the construction of supramolecular structures and materials. With the development of DNA nanotechnology, precise 1D and 3D protein nanostructures have been designed and constructed by using DNA templates through DNA-protein interactions, protein-ligand interactions, and protein-adapter interactions. These DNA-templated protein assemblies show great potential in catalysis, medicine, light-responsive systems, drug delivery, and signal transduction. Herein, we review the progress on DNA-based protein nanostructures that possess sophisticated nanometer-sized structures with programmable shapes and stimuli-responsive parameters, and we present their great potential in the design of biomaterials and biodevices in the future.


Subject(s)
DNA/chemistry , Drug Delivery Systems , Nanostructures/chemistry , Nanotechnology , Proteins/chemistry , Catalysis , Light
11.
Plast Reconstr Surg ; 123(1): 31-43, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19116522

ABSTRACT

BACKGROUND: Transforming growth factor (TGF)-beta1 has been associated with cranial suture fusion, whereas TGF-beta3 has been associated with suture patency. The mouse posterofrontal suture, analogous to the human metopic suture, fuses through endochondral ossification. METHODS: TGF-beta1 and TGF-beta3 expression in the posterofrontal suture was examined by immunohistochemistry. Next, the authors established cultures of suture-derived mesenchymal cells from the posterofrontal suture and examined the cellular responses to TGF-beta1 and TGF-beta3. Proliferation in response to TGF-beta isoforms was examined by bromodeoxyuridine incorporation. High-density micromass culture of posterofrontal mesenchymal cells was used to study the effect of TGF-beta1 and TGF-beta3 on chondrogenic differentiation. RESULTS: TGF-beta1 but not TGF-beta3 protein was highly expressed in chondrocytes within the posterofrontal suture. Significant increases in posterofrontal cell proliferation were observed with TGF-beta3 but not TGF-beta1. TGF-beta1 led to significant increases in chondrogenic-specific gene expression (including Sox9, Col II, Aggrecan, and Col X) as compared with moderate effects of TGF-beta3. TGF-beta1 increased cellular adhesion molecule expression (N-cadherin and fibronectin) and promoted cellular condensation, whereas TGF-beta3 increased cellular proliferation (PCNA expression). Finally, TGF-beta1 and, to a lesser extent, TGF-beta3 induced the expression of fibroblast growth factors (FGF-2 and FGF-18). CONCLUSIONS: TGF-beta1 and TGF-beta3 exhibit marked differences in their effects on chondrogenesis in posterfrontal suture-derived mesenchymal cells, influencing different stages of chondrogenic differentiation. TGF-beta3 significantly increased cellular proliferation, whereas TGF-beta1 induced precartilage condensation, promoting chondrocyte differentiation.


Subject(s)
Chondrogenesis/physiology , Cranial Sutures/physiology , Mesoderm/cytology , Parietal Bone/cytology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta3/genetics , Transforming Growth Factor beta3/metabolism , Cell Differentiation , DNA Primers/genetics , Humans , In Vitro Techniques , Mesoderm/metabolism , Parietal Bone/metabolism , Polymerase Chain Reaction , Tissue and Organ Harvesting
12.
Plast Reconstr Surg ; 122(1): 53-63, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18594386

ABSTRACT

BACKGROUND: Fibroblast growth factor (FGF) signaling is of central importance in premature cranial suture fusion. In the murine skull, the posterofrontal suture normally fuses in early postnatal life, whereas the adjacent sagittal suture remains patent. The authors used a recently developed isolation technique for in vitro culture of suture-derived mesenchymal cells to examine the effects of FGF-2 on proliferation and differentiation of posterofrontal and sagittal suture-derived mesenchymal cells. METHODS: Skulls were harvested from 40 mice (5-day-old). Posterofrontal and sagittal sutures were dissected, separating sutural mesenchymal tissue from dura mater and pericranium, and cultured. After cell migration from the explant and subculture, differences in proliferation and osteogenic differentiation of these distinct populations were studied. The mitogenic and osteogenic effects of recombinant FGF-2 were then assessed. FGF-2 regulation of gene expression was evaluated. RESULTS: Suture-derived mesenchymal cells isolated from the posterofrontal suture demonstrated significantly higher proliferation rates and a robust mitogenic response to FGF-2 as compared with suture-derived mesenchymal cells isolated from the sagittal suture. Interestingly, posterofrontal suture-derived mesenchymal cells retained a higher in vitro osteogenic potential, as shown by alkaline phosphatase activity and bone nodule formation. FGF-2 significantly diminished osteogenesis in both suture-derived mesenchymal cell populations. Subsequently, Ob-cadherin and Sox9 were found to be differentially expressed in posterofrontal versus sagittal suture-derived mesenchymal cells and dynamically regulated by FGF-2. CONCLUSIONS: In vitro osteogenesis of suture-derived mesenchymal cells recapitulates in vivo posterofrontal and sagittal sutural fates. Posterofrontal rather than sagittal suture-derived mesenchymal cells are more responsive to FGF-2 in vitro, in terms of both mitogenesis and osteogenesis.


Subject(s)
Fibroblast Growth Factor 2/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Mesenchymal Stem Cells/drug effects , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cranial Sutures/cytology , Mice , Models, Animal , Osteogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...