Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Langmuir ; 40(25): 13319-13329, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38859701

ABSTRACT

Flow-assisted alignment of anisotropic nanoparticles is a promising route for the bottom-up assembly of advanced materials with tunable properties. While aligning processes could be optimized by controlling factors such as solvent viscosity, flow deformation, and the structure of the particles themselves, it is necessary to understand the relationship between these factors and their effect on the final orientation. In this study, we investigated the flow of surface-charged cellulose nanocrystals (CNCs) with the shape of a rigid rod dispersed in water and propylene glycol (PG) in an isotropic tactoid state. In situ scanning small-angle X-ray scattering (SAXS) and rheo-optical flow-stop experiments were used to quantify the dynamics, orientation, and structure of the assigned system at the nanometer scale. The effects of both shear and extensional flow fields were revealed in a single experiment by using a flow-focusing channel geometry, which was used as a model flow for nanomaterial assembly. Due to the higher solvent viscosity, CNCs in PG showed much slower Brownian dynamics than CNCs in water and thus could be aligned at lower deformation rates. Moreover, CNCs in PG also formed a characteristic tactoid structure but with less ordering than CNCs in water owing to weaker electrostatic interactions. The results indicate that CNCs in water stay assembled in the mesoscale structure at moderate deformation rates but are broken up at higher flow rates, enhancing rotary diffusion and leading to lower overall alignment. Albeit being a study of cellulose nanoparticles, the fundamental interplay between imposed flow fields, Brownian motion, and electrostatic interactions likely apply to many other anisotropic colloidal systems.

2.
Phys Rev E ; 108(1-1): 014607, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37583188

ABSTRACT

We demonstrate a framework of interpreting data from x-ray photon correlation spectroscopy experiments with the aid of numerical simulations to describe nanoscale dynamics in soft matter. This is exemplified with the transport of passive tracer gold nanoparticles in networks of charge-stabilized cellulose nanofibers. The main structure of dynamic modes in reciprocal space could be replicated with a simulated system of confined Brownian motion, a digital twin, allowing for a direct measurement of important effective material properties describing the local environment of the tracers.

3.
Article in English | MEDLINE | ID: mdl-36012088

ABSTRACT

The aim of this study was to investigate the effects of different exercise modes on improving inflammatory response in the elderly. For the research methodology, databases such as CNKI (China National Knowledge Infrastructure), Wanfang Data, Pubmed, Web of Science, and EBSCO were selected for searching. The Cochrane Risk of Bias (ROB) tool was used to evaluate the methodological quality of the included studies, and RevMan5.4.1 analysis software was applied for the statistical analysis. A total of 31 studies (20 randomized controlled trials and 11 self-controlled trials) with 1528 subjects were included. The results of this meta-analysis showed that aerobic exercise, resistance exercise, aerobic + resistance exercise, and HIIT all significantly reduced the levels of IL-6, TNF-α, and CRP in the elderly, and the improvement effects of aerobic + resistance exercise on IL-6, HIIT on TNF-α, and resistance exercise on CRP in the elderly were better than those of the other three exercise modes, respectively. In conclusion, aerobic exercise, resistance exercise, aerobic + resistance exercise, and HIIT all contribute to ameliorating the inflammatory status of the elderly, among which resistance exercise is a noteworthy exercise mode for the elderly to improve inflammatory status.


Subject(s)
Interleukin-6 , Tumor Necrosis Factor-alpha , Aged , China , Exercise/physiology , Humans , Randomized Controlled Trials as Topic
4.
Nanoscale Adv ; 3(17): 4940-4951, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34485817

ABSTRACT

During the past decade, cellulose nanofibrils (CNFs) have shown tremendous potential as a building block to fabricate new advanced materials that are both biocompatible and biodegradable. The excellent mechanical properties of the individual CNF can be transferred to macroscale fibers through careful control in hydrodynamic alignment and assembly processes. The optimization of such processes relies on the understanding of nanofibril dynamics during the process, which in turn requires in situ characterization. Here, we use a shear-free mixing experiment combined with scanning small-angle X-ray scattering (scanning-SAXS) to provide time-resolved nanoscale kinetics during the in situ assembly of dispersed cellulose nanofibrils (CNFs) upon mixing with a sodium chloride solution. The addition of monovalent ions led to the transition to a volume-spanning arrested (gel) state. The transition of CNFs is associated with segmental aggregation of the particles, leading to a connected network and reduced Brownian motion, whereby an aligned structure can be preserved. Furthermore, we find that the extensional flow seems to enhance the formation of these segmental aggregates, which in turn provides a comprehensible explanation for the superior material properties obtained in shear-free processes used for spinning filaments from CNFs. This observation clearly highlights the need for different assembly strategies depending on morphology and interactions of the dispersed nanoparticles, where this work can be used as a guide for improved nanomaterial processes.

5.
Lab Chip ; 21(6): 1084-1095, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33514993

ABSTRACT

Time-resolved in situ characterization of well-defined mixing processes using small-angle X-ray scattering (SAXS) is usually challenging, especially if the process involves changes of material viscoelasticity. In specific, it can be difficult to create a continuous mixing experiment without shearing the material of interest; a desirable situation since shear flow both affects nanoscale structures and flow stability as well as resulting in unreliable time-resolved data. Here, we demonstrate a flow-focusing mixing device for in situ nanostructural characterization using scanning-SAXS. Given the interfacial tension and viscosity ratio between core and sheath fluids, the core material confined by sheath flows is completely detached from the walls and forms a zero-shear plug flow at the channel center, allowing for a trivial conversion of spatial coordinates to mixing times. With this technique, the time-resolved gel formation of dispersed cellulose nanocrystals (CNCs) was studied by mixing with a sodium chloride solution. It is observed how locally ordered regions, so called tactoids, are disrupted when the added monovalent ions affect the electrostatic interactions, which in turn leads to a loss of CNC alignment through enhanced rotary diffusion. The demonstrated flow-focusing scanning-SAXS technique can be used to unveil important kinetics during structural formation of nanocellulosic materials. However, the same technique is also applicable in many soft matter systems to provide new insights into the nanoscale dynamics during mixing.


Subject(s)
Cellulose , Nanoparticles , Ions , Kinetics , Scattering, Small Angle , X-Ray Diffraction
6.
ACS Nano ; 14(12): 16743-16754, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33253525

ABSTRACT

Bio-based nanocellulose has been shown to possess impressive mechanical properties and simplicity for chemical modifications. The chemical properties are largely influenced by the surface area and functionality of the nanoscale materials. However, finding the typical cross-sections of nanocellulose, such as cellulose nanofibers (CNFs), has been a long-standing puzzle, where subtle changes in extraction methods seem to yield different shapes and dimensions. Here, we extracted CNFs from wood with two different oxidation methods and variations in degree of oxidation and high-pressure homogenization. The cross-sections of CNFs were characterized by small-angle X-ray scattering and wide-angle X-ray diffraction in dispersed and freeze-dried states, respectively, where the results were analyzed by assuming that the cross-sectional distribution was quantized with an 18-chain elementary microfibril, the building block of the cell wall. We find that the results agree well with a pseudosquare unit having a size of about 2.4 nm regardless of sample, while the aggregate level strongly depends on the extraction conditions. Furthermore, we find that aggregates have a preferred cohesion of phase boundaries parallel to the (110)-plane of the cellulose fibril, leading to a ribbon shape on average.


Subject(s)
Microfibrils , Wood , Cellulose/chemistry , Cross-Sectional Studies , X-Ray Diffraction
7.
Phys Rev E ; 101(3-1): 032610, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289908

ABSTRACT

Nanostructured materials made through flow-assisted assembly of proteinaceous or polymeric nanosized fibrillar building blocks are promising contenders for a family of high-performance biocompatible materials in a wide variety of applications. Optimization of these processes relies on improving our knowledge of the physical mechanisms from nano- to macroscale and especially understanding the alignment of elongated nanoparticles in flows. Here, we study the full projected orientation distributions of cellulose nanocrystals (CNCs) and nanofibrils (CNFs) in confined flow using scanning microbeam SAXS. For CNCs, we further compare with a simulated system of dilute Brownian ellipsoids, which agrees well at dilute concentrations. However, increasing CNC concentration to a semidilute regime results in locally arranged domains called tactoids, which aid in aligning the CNC at low shear rates, but limit alignment at higher rates. Similarly, shear alignment of CNF at semidilute conditions is also limited owing to probable bundle or flock formation of the highly entangled nanofibrils. This work provides a quantitative comparison of full projected orientation distributions of elongated nanoparticles in confined flow and provides an important stepping stone towards predicting and controlling processes to create nanostructured materials on an industrial scale.

8.
Nanomaterials (Basel) ; 10(4)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276461

ABSTRACT

Synthetic rubber produced from nonrenewable fossil fuel requires high energy costs and is dependent on the presumed unstable petroleum price. Natural rubber latex (NRL) is one of the major alternative sustainable rubber sources since it is derived from the plant 'Hevea brasiliensis'. Our study focuses on integrating sustainably processed carboxycellulose nanofibers from untreated jute biomass into NRL to enhance the mechanical strength of the material for various applications. The carboxycellulose nanofibers (NOCNF) having carboxyl content of 0.94 mmol/g was prepared and integrated into its nonionic form (-COONa) for its higher dispersion in water to increase the interfacial interaction between NRL and NOCNF. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) analyses of NOCNF showed the average dimensions of nanofibers were length (L) = 524 ± 203 nm, diameter (D) 7 ± 2 nm and thickness 2.9 nm. Furthermore, fourier transform infra-red spectrometry (FTIR) analysis of NOCNF depicted the presence of carboxyl group. However, the dynamic light scattering (DLS) measurement of NRL demonstrated an effective diameter in the range of 643 nm with polydispersity of 0.005. Tensile mechanical strengths were tested to observe the enhancement effects at various concentrations of NOCNF in the NRL. Mechanical properties of NRL/NOCNF films were determined by tensile testing, where the results showed an increasing trend of enhancement. With the increasing NOCNF concentration, the film modulus was found to increase quite substantially, but the elongation-to-break ratio decreased drastically. The presence of NOCNF changed the NRL film from elastic to brittle. However, at the NOCNF overlap concentration (0.2 wt. %), the film modulus seemed to be the highest.

9.
Chemistry ; 25(22): 5803-5808, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30801835

ABSTRACT

Charged or neutral adamantane guests can be encapsulated into the cavity of cationic metal-organic M6 L4 (bpy-cage, M=PdII (2,2'-bipyridine), L=2,4,6-tri(4-pyridyl)-1,3,5-triazine) cages through hydrophobic interaction. These encapsulations can provide an approach to control the net charge on the resulting cage-guest complexes and regulate their charge-dominated assembly into hollow spherical blackberry-type assemblies in dilute solutions: encapsulation of neutral guests will hardly influence their self-assembly process, including the blackberry structure size, which is directly related to the intercage distance in the assembly; whereas encapsulating negatively (positively) charged guests resulted in a shorter (longer) intercage distance with larger (smaller) assemblies formed. Therefore, the host-guest chemistry approach can be used to tune the intercage distance accurately.

10.
RSC Adv ; 9(69): 40565-40576, 2019 Dec 08.
Article in English | MEDLINE | ID: mdl-32215205

ABSTRACT

Nanocellulose, which can be derived from any cellulosic biomass, has emerged as an appealing nanoscale scaffold to develop inorganic-organic nanocomposites for a wide range of applications. In this study, titanium dioxide (TiO2) nanocrystals were synthesized in the cellulose nanocrystal (CNC) scaffold using a simple approach, i.e., hydrolysis of a titanium oxysulfate precursor in a CNC suspension at low temperature. The resulting TiO2 nanoparticles exhibited a narrow size range between 3 and 5 nm, uniformly distributed on and strongly adhered to the CNC surface. The structure of the resulting nanocomposite was evaluated by transmission electron microscopy (TEM) and X-ray diffraction (XRD) methods. The growth mechanism of TiO2 nanocrystals in the CNC scaffold was also investigated by solution small-angle X-ray scattering (SAXS), where the results suggested the mineralization process could be described by the Lifshitz-Slyozov-Wagner theory for Ostwald ripening. The demonstrated TiO2/CNC nanocomposite system exhibited excellent performance in dye degradation and antibacterial activity, suitable for a wide range of environmental remediation applications.

11.
Int J Clin Exp Pathol ; 7(9): 5717-24, 2014.
Article in English | MEDLINE | ID: mdl-25337213

ABSTRACT

AIM: To investigate the effect of vascular endothelial growth factor (VEGF) on the expression of pigment epithelium-derived factor (PEDF) in retina and the protective effect of VEGF on retinal ganglion cells (RGCs) of rats with chronic elevated intraocular pressure (EIOP) and it's potential mechanism. METHODS: 30 females Sprague-Dawley rats were randomly divided into three groups: EIOP + VEGF group (A), EIOP + vehicle group (B) and sham operated + VEGF group (C). The EIOP was introduced by obstructing episcleral veins in Group A and Group B. In the Group C, only the bulber conjunctiva was opened without obstructing episcleral veins. Immediately after surgery, rats in the Group A and Group C were intravitreously injected with 2 µL of VEGF. In the Group B, rats were intravitreously treated with 2 µL of normal saline. At 3 and 14 days after injection, animals were sacrificed and the eyes were collected for preparation of frozen sections. RESULTS: After surgery, the IOP increased significantly in the Group A and Group B. There was no significant difference in the IOP at day 3 and day 14 after operation. The PEDF expression in the Group A and Group B was higher than that in the Group C. TUNEL staining showed the apoptotic RGCs markedly reduced after VEGF treatment when compared with rats without treatment. CONCLUSION: Intravitreal treatment with VEGF may reduce the apoptosis of RGCs in rats with chronic intraocular hypertension.


Subject(s)
Eye Proteins/metabolism , Intraocular Pressure , Nerve Growth Factors/metabolism , Ocular Hypertension/drug therapy , Retinal Ganglion Cells/drug effects , Serpins/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Animals , Apoptosis/drug effects , Chronic Disease , Cytoprotection , Disease Models, Animal , Female , Intravitreal Injections , Ocular Hypertension/metabolism , Ocular Hypertension/pathology , Ocular Hypertension/physiopathology , Rats, Sprague-Dawley , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Time Factors , Vascular Endothelial Growth Factor A/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...