Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 44(7): 3797-3808, 2023 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-37438279

ABSTRACT

Roads are the main places where urban people are exposed to atmospheric particulate matter from outdoor activities, and certain oxidatively active substances contained in road particulate matter are important components that induce the generation of reactive oxygen species (ROS), which in turn endanger human health. Here, we explored the characteristics of organic matter composition in water-soluble (WSM) and methanol-soluble fractions (MSM) of road dust in Xi'an and its oxidation potential (OP). Additionally, we investigated the organic fractions and their distribution based on parallel factor analysis (PARAFAC) and analyzed the correlation between organic matter types and OP. The results showed that the water-insoluble fraction of road dust in Xi'an contained more chromophoric organic matter with an average total concentration of (4.71±1.27)×104 R.U., which was 12 times higher than that of WSM[(3.96±1.10)×103 R.U.], of which low-oxidizing humic-like substances (HULIS) were the main organic matter (34.8%-43.7% of the total organic matter). The results of cluster analysis showed that the important sources of organic matter in road dust in Xi'an were fuel combustion and industrial production. The mean value of dust oxidative toxicity was (0.34±0.08) pmol·(min·µg)-1, with the water-insoluble fraction providing 70% of the total oxidative toxicity of dust particles, which was 2.4 times higher than the water-soluble fraction. The main precursors of oxidative toxicity of dust particles were metal elements, and special types of organic substances were also one of the important oxidative toxicity precursors, among which chromophore organic matter was the main cause of OP production in the WSM fraction (r=0.35, P<0.01), and protein-like organic matter and highly oxidized HULIS in WSM may have been the main two types of organic substances for OP production. However, there was no significant correlation between organic matter concentration in MSM and water-insoluble OP (OPTotal-OPWSM) (r=-0.04, P>0.1), so the oxidative toxicity of the water-insoluble particulate matter fraction was mainly generated from non-organic matter.

2.
Sci Total Environ ; 891: 164704, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37295530

ABSTRACT

Road dust pollution is still an important environmental problem in the cities of northwest China. To better understand the risk exposure and sources of unhealthy metals in road dust and foliar dust, the dust samples were collected in Xi'an city, Northwest China. The sampling period was during December 2019 and 53 metals in the dust were analyzed using Inductive Coupled Plasma Emission Spectrometer (ICPA-RQ). Compared to road dust, most metals are found in relatively higher concentrations in foliar dust, especially water-soluble metals, with Mn being 3710 times more abundant in foliar dust. However, the regional characteristics of road dust are more pronounced, i.e., the concentrations of Co and Ni are six times higher in industrial manufacturing areas than in residential areas. The results of the non-negative matrix factorization and principal component analysis source analyses demonstrate this difference, the dust in Xi'an is mainly from transportation (63 %) and natural sources (35 %). From the emission characteristics of the traffic source dust, brake wear is the main cause of traffic source, accounting for 43 %. However, the metal sources in each principal component of foliar dust show a more mixed state, which is consistent with the results of regional characterization. The health risk evaluation shows that traffic sources are the main risk source and contribute 67 % to the total risk. Among them, Pb from tire wear is the main contribution to the total non-carcinogenic risk for children, which is close to the risk threshold. In addition, Cr and Mn are also worthy of attention. The above results all emphasize the contribution of traffic emissions, especially the non-tailpipe emission component, to dust emissions and health risks. Therefore, controlling vehicle wear and tear and exhaust emissions should be the main way to improve air quality, such as traffic control and improvement of vehicle component materials.


Subject(s)
Dust , Metals, Heavy , Child , Humans , Dust/analysis , Metals, Heavy/analysis , Environmental Monitoring , China , Risk Assessment , Cities
3.
J Hazard Mater ; 442: 130087, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36206715

ABSTRACT

Environmental persistent free radicals (EPFRs) are new environmental health risk substances in the atmosphere, and their oxidative toxicity (OT) has not been strongly confirmed. In this study, the fugitive characteristics of EPFRs in road dust in a metropolitan city located in northwest China, and their potential oxidative toxicity were investigated. The results showed that the road dust contains Carbon-centered EPFRs with the mean mass concentration of (6.6 ± 5.0) × 1017 spins/g. EPFRs in road dust are degradable and have a half-life of 4.5 years. The water insoluble (WIS) components contribute 71% to the oxidative toxicity of road dust and show a rapid toxicity generation process, while the oxidative toxicity generation rate of water-soluble dust is more stable. Based on the positive matrix factorization (PMF) model, the contribution of EPFRs-dominated factors to Total-OT and WIS-OT is 17.3% and 33.3%, respectively. The PMF model results indicated that different types of EPFRs contributed differently to the oxidative toxicity of road dust and Carbon-centered EPFRs are more likely to participate in reactive oxygen species generation. Our results highlight that the EPFRs are an important contributor to the oxidative toxicity of atmospheric particulate matter, and their oxidative toxicity is dependent on the types of free radicals. It also provides an important insight into the influence of other potentially toxic substances on the oxidative toxicity of atmospheric PM.


Subject(s)
Air Pollutants , Dust , Dust/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Reactive Oxygen Species , Particulate Matter/toxicity , Particulate Matter/analysis , Free Radicals , Environmental Monitoring , China , Carbon , Water
4.
PLoS One ; 17(6): e0270081, 2022.
Article in English | MEDLINE | ID: mdl-35696410
5.
J Mol Model ; 28(4): 109, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35357589

ABSTRACT

The formation of gas hydrate is a serious threat to the safe and effective completion of deepwater drilling and transportation operations, although it is considered as a potential energy resource. The inorganic salts are generally used as thermodynamic inhibitors; CaCl2 as a common additive in drilling fluids exhibits unique properties. In this study, we explored the dissociation mechanism of CH4 hydrate in CaCl2 solutions at the macroscopic and microscopic scale using experiment and molecular dynamics (MD) simulation. The experimental results showed that CaCl2 accelerated the dissociation rate of CH4 hydrate. The dissociation rate of CH4 hydrate increased with the increase of CaCl2 concentration at large depressurization pressure and was mainly affected by pressure when the depressurization pressure was lower. MD simulations were used to give an atomic scale interpretation of the macroscopic results obtained from the experiment. The results showed that the addition of CaCl2 destroyed the resistance liquid film formed during CH4 hydrate dissociation, thus accelerating the dissociation process, in good agreement with experimental results. HIGHLIGHTS: • The amount of CaCl2 affects CH4 hydrate dissociation at large depressurization pressure. • The dissociation of CH4 hydrate at low depressurization pressure is dependent on pressure. • Ca2+ destroys effectively the resistance liquid film produced during hydrate dissociation. • MD simulation results are in agreement with those of the experiment.

6.
Sensors (Basel) ; 21(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578765

ABSTRACT

The drill string used in drilling is in a complex motion state downhole for several kilometers. The operating attitude and eccentricity of the downhole drill string play important roles in avoiding downhole risks and correcting the output of the imaging measurement sensor while drilling (IMWD). This paper proposes a method for measuring eccentricity while drilling using two sets of caliper sensors coupled with a fiber-optic gyroscope for continuous attitude measurement, which is used to solve the problem of the quantitative measurement of complex eccentricity that changes in real-time downhole. According to the measurement and calculation methods involved in this article, we performed simulations of the attitude of the drill string near where the IMWD tool is located in the wellbore under a variety of complex downhole conditions, such as centering, eccentricity, tilt, buckling, rotation, revolution, etc. The simulation and field test results prove that the distance between the imaging while drilling sensor and the borehole wall is greatly affected by the downhole attitude and revolution. The multi-sensor layout measurement scheme and the data processing based on the above-mentioned measurement involved can push the drill collar movement and eccentricity matrix specifically studied downhole from only qualitative estimation to real-time measurement and quantitative calculation. The above measurement and data processing methods can accurately measure and identify the local operating posture of the drill string where the IMWD sensor is located, and quantitatively give the eccentric distance matrix from the measuring point to the borehole wall required for environmental correction of the IMWD sensor.

7.
RSC Adv ; 9(5): 2509-2515, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-35520495

ABSTRACT

Cavitating jet technology is used to change the quality and to reduce the viscosity of heavy oil because bubble collapse can cause extreme conditions such as high pressure and temperature. The experimental study on the viscosity reduction of heavy oil using a cavitating jet was performed through a self-designed experimental system for heavy oil viscosity reduction by a cavitating jet. Tetrahydronaphthalene was used as the hydrogen donor, and after adding different amount of tetrahydronaphthalene, the viscosity change of the heavy oil was studied before and after treatment by the cavitation jet. The experimental results show that cavitating jet technology can be used to improve the quality and reduce the viscosity of heavy oil, and the addition of tetrahydronaphthalene can effectively reduce the viscosity of heavy oil. With the increase in the amount of tetrahydronaphthalene added, the viscosity reduction effect on the heavy oil improved, and the viscosity reduction rate increased. When a certain amount of tetrahydronaphthalene was added, the viscosity of the heavy oil decreased gradually and plateaued with the increase in the cycles of cavitation jet treatment. The addition of tetrahydronaphthalene can dilute the heavy oil and effectively reduce the viscosity and improve the quality of heavy oil by providing active hydrogen to close the macromolecular hydrocarbon free radicals generated by the cavitation effect.

8.
PLoS One ; 13(4): e0194582, 2018.
Article in English | MEDLINE | ID: mdl-29641615

ABSTRACT

The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

9.
Materials (Basel) ; 10(9)2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28862679

ABSTRACT

A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling.

10.
PLoS One ; 10(5): e0126941, 2015.
Article in English | MEDLINE | ID: mdl-25961729

ABSTRACT

Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks.


Subject(s)
Models, Theoretical , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...