Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Genes Dis ; 10(4): 1626-1640, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397518

ABSTRACT

More than 50% of prostate cancer (PCa) patients have bone metastasis with osteoblastic lesions. MiR-18a-5p is associated with the development and metastasis of PCa, but it remains unclear whether it is involved in osteoblastic lesions. We first found that miR-18a-5p was highly expressed in the bone microenvironment of patients with PCa bone metastases. To address how miR-18a-5p affects PCa osteoblastic lesions, antagonizing miR-18a-5p in PCa cells or pre-osteoblasts inhibited osteoblast differentiation in vitro. Moreover, injection of PCa cells with miR-18a-5p inhibition improved bone biomechanical properties and bone mineral mass in vivo. Furthermore, miR-18a-5p was transferred to osteoblasts by exosomes derived from PCa cells and targeted the Hist1h2bc gene, resulting in Ctnnb1 up-regulation in the Wnt/ß-catenin signaling pathway. Translationally, antagomir-18a-5p significantly improved bone biomechanical properties and alleviated sclerotic lesions from osteoblastic metastases in BALB/c nude mice. These data suggest that inhibition of exosome-delivered miR-18a-5p ameliorates PCa-induced osteoblastic lesions.

2.
Mikrochim Acta ; 190(7): 261, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322368

ABSTRACT

A molecularly imprinted electrochemical sensor was designed for the selective determination of gatifloxacin (GTX) based on dual functional monomers. Multi-walled carbon nanotube (MWCNT) enhanced the current intensity and zeolitic imidazolate framework 8 (ZIF8) provided a large surface area to produce more imprinted cavities. In the electropolymerization of molecularly imprinted polymer (MIP), p-aminobenzoic acid (p-ABA) and nicotinamide (NA) were used as dual functional monomers, and GTX was the template molecule. Taking [Fe(CN)6]3-/4- as an electrochemical probe, an oxidation peak on the glassy carbon electrode was located at about 0.16 V (vs. saturated calomel electrode). Due to the diverse interactions among p-ABA, NA, and GTX, the MIP-dual sensor exhibited higher specificity towards GTX than MIP-p-ABA and MIP-NA sensors. The sensor had a wide linear range from 1.00 × 10-14 to 1.00 × 10-7 M with a low detection limit of 2.61 × 10-15 M. Satisfactory recovery between 96.5 and 105% with relative standard deviation from 2.4 to 3.7% in real water samples evidenced the potential of the method in antibiotic contaminant determination.


Subject(s)
Molecular Imprinting , Polymers , Polymers/chemistry , Gatifloxacin , Electrochemical Techniques/methods , Molecular Imprinting/methods , Limit of Detection , Molecularly Imprinted Polymers , 4-Aminobenzoic Acid
3.
Front Immunol ; 13: 941189, 2022.
Article in English | MEDLINE | ID: mdl-36091015

ABSTRACT

Bladder cancer (BLCA) is the 10th most common form of cancer worldwide. Currently, the response rate of BLCA patients to novel immunotherapy and immune checkpoint inhibitor (ICI) treatment is around 30% or less. Therefore, there is an urgent clinical demand to understand the regulation of immune function in BLCA patients. LncRNAs are known to play fundamental roles in the regulation of the immune system in the tumor microenvironment. In this report, we performed a comprehensive analysis to identify immune-related lncRNAs (IRLs) in BLCA patients using The Cancer Genome Atlas (TCGA) databases. BLCA patients were divided into five TME subtypes. Subtype HMIE was strongly related to survival and high anti-tumor activity of patients. Through a four-step analysis, we identified 34 IRLs as subtype HMIE related lncRNAs (HMIE-lncs).The correlation analysis with immune cell infiltration and target gene pathway enrichment showed that 34 HMIE-lncs were correlated with immune cell activation and tumor cell killing. Among them, 24 lncRNAs were related to good prognosis. We constructed a risk model to predict BLCA. Cross tumor validation was performed, and the results showed that the 34 HMIE-lncs identified in the BLCA patients in this study were highly expressed in the immune-favorable TME subtype (IE) in most of the other cancer types.


Subject(s)
RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Immunologic Factors , Immunotherapy , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Microenvironment/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/therapy
4.
Front Pharmacol ; 12: 772540, 2021.
Article in English | MEDLINE | ID: mdl-34803714

ABSTRACT

Osteoporosis is a common aging-related metabolic disease that mainly occurs in older adults and postmenopausal women. Despite advances in anti-osteoporosis treatment, outcomes remain unsatisfactory due to detrimental side effects. BCI hydrochloride (BCI), a selective dual-specificity phosphatase 6 (DUSP6) inhibitor, is associated with multiple cellular functions, including inhibiting tumor growth and macrophage inflammation; however, its role in regulating osteoclast differentiation remains unknown. Here, we revealed that treatment with BCI attenuated RANKL-mediated osteoclast differentiation in vitro and alleviated ovariectomy-induced osteoporosis without obvious toxicity. Specifically, BCI disrupted F-actin ring formation and bone-resorption activity and decreased osteoclast-specific gene and protein levels in a dose-dependent manner. KEGG pathway analysis, GSEA based on transcriptome sequencing, and western blot results suggested that BCI inhibited RANKL-induced osteoclastogenesis by restraining STAT3 and NF-κB signaling and attenuating NF-κB/p65 interaction with NFATc1. These results revealed that BCI treatment prevented postmenopausal osteoporosis and might represent an effective approach for treating osteoporosis.

5.
Chem Soc Rev ; 49(23): 8584-8686, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33073812

ABSTRACT

Dramatically increased CO2 concentration from several point sources is perceived to cause severe greenhouse effect towards the serious ongoing global warming with associated climate destabilization, inducing undesirable natural calamities, melting of glaciers, and extreme weather patterns. CO2 capture and utilization (CCU) has received tremendous attention due to its significant role in intensifying global warming. Considering the lack of a timely review on the state-of-the-art progress of promising CCU techniques, developing an appropriate and prompt summary of such advanced techniques with a comprehensive understanding is necessary. Thus, it is imperative to provide a timely review, given the fast growth of sophisticated CO2 capture and utilization materials and their implementation. In this work, we critically summarized and comprehensively reviewed the characteristics and performance of both liquid and solid CO2 adsorbents with possible schemes for the improvement of their CO2 capture ability and advances in CO2 utilization. Their industrial applications in pre- and post-combustion CO2 capture as well as utilization were systematically discussed and compared. With our great effort, this review would be of significant importance for academic researchers for obtaining an overall understanding of the current developments and future trends of CCU. This work is bound to benefit researchers in fields relating to CCU and facilitate the progress of significant breakthroughs in both fundamental research and commercial applications to deliver perspective views for future scientific and industrial advances in CCU.

6.
Environ Sci Technol ; 54(21): 13944-13952, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33054187

ABSTRACT

Amine-based CO2 capture technology requires high-energy consumption because the desorption temperature required for carbamate breakdown during absorbent regeneration is higher than 110 °C. In this study, we report a stable solid acid catalyst, namely, SO42-/ZrO2-HZSM-5 (SZ@H), which has improved Lewis acid sites (LASs) and Bronsted acid sites (BASs). The improved LASs and BASs enabled the CO2 desorption temperature to be decreased to less than 98 °C. The BASs and LASs of SZ@H preferred to donate or accept protons; thus, the amount and rate of CO2 desorption from spent monoethanolamine were more than 40 and 37% higher, respectively, when using SZ@H than when not using any catalyst. Consequently, the energy consumption was reduced by approximately 31%. A catalyzed proton-transfer mechanism is proposed for SZ@H-catalyzed CO2 regeneration through experimental characterization and theoretical calculations. The results reveal the role of proton transfer during CO2 desorption, which enables the feasibility of catalysts for CO2 capture in industrial applications.


Subject(s)
Carbamates , Carbon Dioxide , Amines , Catalysis , Ethanolamine
7.
Environ Sci Technol ; 53(21): 12873-12881, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31446756

ABSTRACT

Biphasic solvents containing mixed amines have a phase separation behavior and energy-efficient regeneration for CO2 capture. However, the trade-off between the CO2 absorption capacity and the volume ratio of the CO2-rich phase presents a critical challenge to the reducing potential in regeneration energy consumption. In this study, sulfolane was proposed to regulate the phase separation behavior of a N,N-diethylethanolamine (DEEA)-triethylenetetramine (TETA) biphasic absorbent by simultaneously decreasing the volume ratio and increasing the CO2 loading of the rich phase, without sacrificing the high CO2 capacity. In the DEEA-TETA-sulfolane biphasic absorbent, sulfolane acted as a phase splitter and physical activator. The replacement of a part of H2O by hydrophobic sulfolane contributed to a substantial decrease in the volume ratio of the rich phase from 83 to 39% and an increase in CO2 loading of the rich phase from 3.10 to 4.92 mol/L. The regeneration heat decreased to 1.81 GJ/t CO2, 26.4% less than DEEA-TETA, and 54.6% less than the 5 M monoethanolamine system. Moreover, by promoting the mass transfer coefficient of CO2 in DEEA-TETA-sulfolane to 1.8 times the original DEEA-TETA system, sulfolane was validated as a physical activator. Our study provides a promising strategy for regulating the phase separation behavior of biphasic solvents and enhancing the regeneration energy efficiency for CO2 capture.


Subject(s)
Carbon Dioxide , Trientine , Ethanolamines , Solvents , Thiophenes
8.
Nanomaterials (Basel) ; 9(6)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181646

ABSTRACT

The understanding of the relationship between the chemical structure and the hydrophilic structure is crucial for the designing of high-performance PEMs. Comparative studies in typical Nafion and sulfonated poly (ether ether ketone) (SPEEK) were performed using a combined experimental and theoretical method. SPEEK showed suppressed fuel crossover and good mechanical property but low water uptake, weak phase separation, and inadequate proton conductivity. Molecular dynamics (MD) simulation approaches were employed to get a molecular-level understanding of the structure-property relationship of SPEEK and Nafion membranes. In SPEEK membranes, the local aggregation of hydrophilic clusters is worse, and much stronger electrostatic interaction between Os-Hh was verified, resulting in less delocalized free H3O+ and much lower DH3O+. In addition, the probability of H2O-H3O+ association varied with water content. Particularly, SPEEK exhibited much lower H9O4+ probability at various relative water contents, leading to lower structural diffusivity than Nafion. Eventually, SPEEK possessed low vehicular and structural diffusivities, which resulted in a low proton conductivity. The results indicated that the structure of hydrated hydronium complexes would deform to adapt the confining hydrophilic channels. The confinement effect on diffusion of H2O and H3O+ is influenced by the water content and the hydrophilic morphologies. This study provided a new insight into the exploration of high-performance membranes in fuel cell.

9.
Int J Biol Macromol ; 132: 1185-1192, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30974138

ABSTRACT

A new fluorogenic bio-adsorbent was successfully synthesized for detection and adsorption of mercury ions in aqueous solution. It showed high sensitivity in removing Hg (II) at low concentration with a detection limit of 84 ppb which was below the maximum discharge standard in enterprise drain off water in China, besides, the adsorbent had good selectivity towards Hg (II) among numerous kinds of cations in water that it showed fluorescent quenching properties for Hg (II) ions due to photo-induced electron transfer. In addition, batch adsorption experiments were investigated to study the influence of initial concentration of metal ions, contact time, pH of the solution on the adsorption capacity. Equilibrium adsorption isotherms demonstrated the Hg (II) removing process fitted well with Langmuir isotherm model, and the maximum adsorption capacity for mercury was measured to be 143.88 mg/g. Furthermore, the adsorption kinetics was found to follow pseudo-second-order model. FTIR spectra and SEM-elemental mapping clearly confirmed the adsorbed heavy metal ions.


Subject(s)
Cellulose/chemistry , Mercury/analysis , Mercury/isolation & purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Water/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Mercury/chemistry , Solutions , Spectrometry, Fluorescence , Water Pollutants, Chemical/chemistry
10.
Environ Sci Technol ; 52(24): 14556-14563, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30407798

ABSTRACT

A novel phase splitter, namely, sulfolane, was proposed to advance the traditional monoethanolamine (MEA) absorption technology for CO2 capture by simultaneously promoting the absorption rate and lowering heat duty. The phase-splitting phenomenon was observed after the CO2 loading level had exceeded 0.73 mol CO2/L, thereby generating a CO2-rich MEA upper layer and a lower layer containing sulfolane. Sulfolane facilitated CO2 absorption because of its strong affinity with acid gases, which resulted in an absorption rate 2.7 times higher than that of the conventional MEA process. The process simulation using Aspen Plus indicated that the regeneration heat with the MEA/sulfolane mixture as a solvent substantially decreased to 2.67 GJ/t-CO2, which was 31% lower than that of the conventional MEA process (3.85 GJ/t-CO2). Moreover, the sensible heat and vaporization heat of MEA/sulfolane were markedly decreased by 62.4% and 47.9%, which could be ascribed to the decreased stripping volume and relatively high CO2 partial pressure caused by liquid-liquid phase separation. The proposed system is proved to be a promising candidate for the advancement of CO2 capture techniques with high CO2 absorption capacity, rapid absorption rate, and low-energy penalty.


Subject(s)
Ethanolamine , Thiophenes , Carbon Dioxide , Partial Pressure
11.
J Vis ; 16(3): 13, 2016.
Article in English | MEDLINE | ID: mdl-26873777

ABSTRACT

Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.


Subject(s)
Spatial Learning/physiology , Visual Perception/physiology , Contrast Sensitivity/physiology , Female , Humans , Male , Orientation/physiology , Transfer, Psychology , Young Adult
12.
Nanoscale ; 7(35): 14684-90, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26274862

ABSTRACT

A nanocasting method to fabricate nitrogen-doped dual mesoporous carbon is proposed by the carbonization of nitrile functional ionic liquid (FIL) grafted SBA-15 for the first time. These carbon materials have high nitrogen content (12.8%), large specific surface areas (763 m(2) g(-1)) and uniform rod morphologies, which are derived from FILs grafted on the surface of SBA-15. Furthermore, by adjusting the impregnation amount of ionic liquids on SBA-15, pore structures of these carbon materials can be adjusted from single to dual mesopores. The developed dual mesoporous carbon materials exhibit good catalytic performance in the selective oxidation of ethylbenzene, ascribed to the promoting effects of nitrogen-doping, high surface area and dual mesostructure. It may be concluded that the dual mesostructure has an advantage over a single mesostructure to obtain a fast mass transport rate, resulting in higher acetophenone yield.

13.
Sci Rep ; 5: 8897, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25754026

ABSTRACT

Aberrant DNA methylation can be a potential genetic mechanism in non-small cell lung cancer (NSCLC). However, inconsistent findings existed among the recent association studies between cigarette smoking and gene methylation in lung cancer. The purpose of our meta-analysis was to evaluate the role of gene methylation in the smoking behavior of NSCLC patients. A total of 116 genes were obtained from 97 eligible publications in the current meta-analyses. Our results showed that 7 hypermethylated genes (including CDKN2A, RASSF1, MGMT, RARB, DAPK, WIF1 and FHIT) were significantly associated with the smoking behavior in NSCLC patients. The further population-based subgroup meta-analyses showed that the CDKN2A hypermethylation was significantly associated with cigarette smoking in Japanese, Chinese and Americans. In contrast, a significant association of RARB hypermethylation and smoking behavior was only detected in Chinese but not in Japanese. The genes with altered DNA methylation were likely to be potentially useful biomarkers in the early diagnosis of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation/genetics , Neoplasm Proteins/genetics , Smoking/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , China , Cyclin-Dependent Kinase Inhibitor p16/genetics , Female , Genetic Association Studies , Humans , Japan , Male , Smoking/pathology
14.
Langmuir ; 25(14): 8226-34, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-19594188

ABSTRACT

In this paper, we report a novel experimental protocol for the preparation of stable and exfoliated nano-Pt catalysts supported on layered silicate clay surfaces. Uniformly dispersed highly crystalline Pt nanoparticles with diameters between 2 and 5 nm were chemically adsorbed on to the layered silicate surfaces using a chemical vapor deposition (CVD) method employing organoclay as the initial support. The as-prepared catalysts were found to be extremely stable against both intensive mechanical agitation and high temperature treatment. No Pt loading or morphology changes were observed after ultrasonication under a sonication power density of 6 MW/m(3) for up to 72 h at room temperature or annealing at 700 degrees C for 1 h under Ar flow. On the other hand, Pt catalysts prepared using the inorganic clay as the initial support were found to be highly unstable against both mechanical agitation and high temperature treatment. Significant leaching and catalyst restructuring or sintering was observed. Exfoliation of catalysts and the nature of Pt adsorption were elucidated by systematic analysis using wide-angle X-ray diffraction (WAXD) analysis, Brunauer-Emmett-Teller (BET) surface area analysis, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) analysis. No low angle diffraction peak was observed in the WAXD pattern, and a 700% increase in BET surface area was observed after Pt deposition on clay surfaces. Depth profiling ToF-SIMS on Pt deposited on SiO(2) wafer surfaces showed the presence of PtSiO ion at the Pt and SiO(2) interface. This ion group was also detected in the bulk of Pt-OrC catalyst, confirming chemisorption of Pt on layered silicate clays. A much lower concentration of PtSiO ion was observed in the Pt-NaC with a similar Pt loading. In addition, X-ray photoelectron spectroscopy (XPS) shows that the binding energy of Pt4f(7/2) in Pt-OrC is much higher than that in the Pt-NaC. The protocol reported in this paper can also be applicable to other clay supported stable metallic catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...