Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Res ; 36(4): 269-279, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35965436

ABSTRACT

Microtubule-severing proteins (MTSPs), are a family of proteins which use adenosine triphosphate to sever microtubules. MTSPs have been shown to play an important role in multiple microtubule-involved cellular processes. One member of this family, fidgetin ( FIGN), is also involved in male fertility; however, no studies have explored its roles in female fertility. In this study, we found mouse fidgetin is rich within oocyte zona pellucida (ZP) and is the only MTSP member to do so. Fidgetin also appears to interact with all three ZP proteins. These findings prompted us to propose that fidgetin might prevent polyspermy. Results from in vitro maturation oocytes analysis showed that fidgetin knockdown did cause polyspermy. We then deleted all three fidgetin isoforms with CRISPR/Cas9 technologies; however, female mice remained healthy and with normal fertility. Of all mouse MTSPs, only the mRNA level of fidgetin-like 1 ( FIGNL1) significantly increased. Therefore, we assert that fidgetin-like 1 compensates fidgetin's roles in fidgetin knockout female mice.

2.
Clin Transl Med ; 12(7): e891, 2022 07.
Article in English | MEDLINE | ID: mdl-35858239

ABSTRACT

BACKGROUND: An impeccable female meiotic prophase is critical for producing a high-quality oocyte and, ultimately, a healthy newborn. SYCP3 is a key component of the synaptonemal complex regulating meiotic homologous recombination. However, what regulates SYCP3 stability is unknown. METHODS: Fertility assays, follicle counting, meiotic prophase stage (leptotene, zygotene, pachytene and diplotene) analysis and live imaging were employed to examine how FBXW24 knockout (KO) affect female fertility, follicle reserve, oocyte quality, meiotic prophase progression of female germ cells, and meiosis of oocytes. Western blot and immunostaining were used to examined the levels & signals (intensity, foci) of SYCP3 and multiple key DSB indicators & repair proteins (γH2AX, RPA2, p-CHK2, RAD51, MLH1, HORMAD1, TRIP13) after FBXW24 KO. Co-IP and immuno-EM were used to examined the interaction between FBXW24 and SYCP3; Mass spec was used to characterize the ubiquitination sites in SYCP3; In vivo & in vitro ubiquitination assays were utilized to determine the key sites in SYCP3 & FBXW24 for ubiquitination. RESULTS: Fbxw24-knockout (KO) female mice were infertile due to massive oocyte death upon meiosis entry. Fbxw24-KO oocytes were defective due to elevated DNA double-strand breaks (DSBs) and inseparable homologous chromosomes. Fbxw24-KO germ cells showed increased SYCP3 levels, delayed prophase progression, increased DSBs, and decreased crossover foci. Next, we found that FBXW24 directly binds and ubiquitinates SYCP3 to regulate its stability. In addition, several key residues important for SYCP3 ubiquitination and FBXW24 ubiquitinating activity were characterized. CONCLUSIONS: We proposed that FBXW24 regulates the timely degradation of SYCP3 to ensure normal crossover and DSB repair during pachytene. FBXW24-KO delayed SYCP3 degradation and DSB repair from pachytene until metaphase II (MII), ultimately causing failure in oocyte maturation, oocyte death, and infertility.


Subject(s)
Cell Cycle Proteins , F-Box Proteins/metabolism , Meiosis , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Meiosis/genetics , Mice , Prophase , Synaptonemal Complex/genetics , Synaptonemal Complex/metabolism , Ubiquitination/genetics
3.
Research (Wash D C) ; 2022: 9834963, 2022.
Article in English | MEDLINE | ID: mdl-38645677

ABSTRACT

Objective. Chronic stress (CS)-induced abnormal metabolism and other subsequent aspects of abnormality are threatening human health. Little is known regarding whether and how protein post-translational-modifications (PTMs) correlate with abnormal metabolism under CS. The aim of this study was to address this issue and also identify novel key protein PTM. Methods. First, we screened which pan-PTM had significant change between control and CS female mice and whether clinical CS females had similar pan-PTM change. Second, we performed quantitative PTM-omics and metabolomics to verify the correlation between abnormal protein PTMs and atypical metabolism. Third, we performed quantitative phospho-omics to identify the key PTM-regulating enzyme and investigate the interaction between PTM protein and PTM-regulating enzyme. Fourth, we attempted to rectify the abnormal metabolism by correcting the activity of the PTM-regulating enzyme. Finally, we examined whether the selected key protein was also correlated with stress scores and atypical metabolism in clinical women. Results. We initially found that multiple tissues of CS female mice have downregulated pan-crotonylation, and verified that the plasma of clinical CS females also had downregulated pan-crotonylation. Then we determined that ATP5O-K51 crotonylation decreased the most and also caused gross ATP5O decrement, whereas the plasma of CS mice had downregulated phospholipids. Next, downregulating ATP5O crotonylation partially recapitulated the downregulated phospholipid metabolism in CS mice. Next, we verified that HDAC2-S424 phosphorylation determined its decrotonylation activity on ATP5O-K51. Furthermore, correcting HDAC2 hyper-phosphorylation recovered the gross ATP5O level and partially rescued the downregulated phospholipid metabolism in CS mice. Finally, the ATP5O level was also significantly lower and correlated with high stress scores and downregulated phospholipid metabolism in clinical female plasma. Conclusion. This study discovered a novel PTM mechanism involving two distinct types of PTM in CS and provided a novel reference for the clinical precautions and treatments of CS.

4.
Nat Aging ; 1(11): 1010-1023, 2021 11.
Article in English | MEDLINE | ID: mdl-37118338

ABSTRACT

Female ovaries degenerate about 20 years earlier than testes leading to reduced primordial follicle reserve and a reduction in oocyte quality. Here we found that bridge integrator 2 (BIN2) is enriched in mouse ovaries and oocytes and that global knockout of this protein improves both female fertility and oocyte quality. Quantitative ovarian proteomics and phosphoproteomics showed that Bin2 knockout led to a decrease in phosphorylated ribosomal protein S6 (p-RPS6), a component of the mammalian target of rapamycin pathway and greatly increased nicotinamide nucleotide transhydrogenase (NNT), the free-radical detoxifier. Mechanistically, we find that phosphorylation of BIN2 at Thr423 and Ser424 leads to its translocation from the membrane to the cytoplasm, subsequent phosphorylation of RPS6 and inhibition of Nnt translation. We synthesized a BIN2-penetrating peptide (BPP) designed to inhibit BIN2 phosphorylation and found that a 3-week BPP treatment improved primordial follicle reserve and oocyte quality in aging and after chemotherapy-induced premature ovarian failure without discernible side effects.


Subject(s)
Ovary , Signal Transduction , Female , Mice , Animals , Ovary/metabolism , Phosphorylation , Oocytes , Fertility , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...