Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 229: 119491, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36535087

ABSTRACT

Municipal wastewater treatment which is associated with high energy consumption and excessive greenhouse gas (GHG) emissions, has been facing severe challenges toward carbon emissions. In this study, a high-rate activated sludge-two-stage vertical up-flow constructed wetland (HRAS-TVUCW) system was developed to reduce carbon emissions during municipal wastewater treatment. Through carbon management, optimized mass and energy flows were achieved, resulting in high treatment efficiency and low operational energy consumption. The carbon emission of the HRAS-TVUCW system (i.e., 0.21 kg carbon dioxide equivalent/m3 wastewater) was 4.1-folds lower than that of the conventional anaerobic/anoxic/aerobic (A2O) process. Meanwhile, the recovered energy from the HRAS-TVUCW system increased its contribution to carbon neutrality to 40.2%, 4.6-folds higher than that of the A2O process. Results of functional microbial community analysis at the genus level revealed that the controlled dissolved oxygen allocation led to distinctive microbial communities in each unit of HRAS-TVUCW system, which facilitated denitrification efficiency increase and carbon emissions reduction. Overall, the HRAS-TVUCW system could be considered as a cost-effective and sustainable low-carbon technology for municipal wastewater treatment.


Subject(s)
Greenhouse Gases , Water Purification , Greenhouse Gases/analysis , Sewage/analysis , Greenhouse Effect , Wetlands , Carbon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...