Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(5): 510-517, 2021 Oct 01.
Article in English, Chinese | MEDLINE | ID: mdl-34636197

ABSTRACT

OBJECTIVES: This study aims to investigate the effect of RhoE expression on the migration and invasion of tongue squamous cell carcinoma (TSCC). METHODS: Forty-eight TSCC cases were selected from the Maxillofacial Surgery Center of Qingdao Municipal Hospital from 2017 to 2019. The expression of RhoE in the specimens (TSCC and adjacent tissues) was detected by immunohistochemistry, and RhoE mRNA and protein were extracted to further detect the expression of RhoE. SCC-4 and CAL-27 cells were selected for in vitro experiments. Transient transfection was used to overexpress RhoE. Real-time fluorescence quantitative PCR (qRT-PCR) and Western blot analyses were conducted to detect the overexpression efficiency. Scratch test and Transwell cell invasion tests were used to detect the migration and invasion ability of TSCC, respectively. The expression levels of Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were detected by Western blot. Experimental data were analyzed by Graphpad prism 8.2.1 software. RESULTS: The expression level of RhoE in TSCC was significantly lower than that in adjacent tissues (P<0.05). The migration and invasion abilities of TSCC were significantly lower than those in the control group (P<0.05). The Western blot showed significantly lower expression levels of ROCK1, MMP-2, and MMP-9 in the experimental group than in the control group (P<0.05). CONCLUSIONS: RhoE expression is low in TSCC. Over expression RhoE in TSCC can significantly decrease its migration and invasion abilities. Hence, RhoE may play an important role in regulating the metastasis and invasion of TSCC and provide a new target for gene therapy.


Subject(s)
Carcinoma, Squamous Cell , Tongue Neoplasms , rho GTP-Binding Proteins/genetics , Cell Line, Tumor , Humans , Matrix Metalloproteinase 2 , Neoplasm Invasiveness , Tongue , rho-Associated Kinases
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(3): 328-335, 2021 Jun 01.
Article in English, Chinese | MEDLINE | ID: mdl-34041883

ABSTRACT

OBJECTIVES: The effect of isoprenylcysteine carboxymethyltransferase (ICMT) silencing on the migration and invasion of tongue squamous cell carcinoma was investigated by constructing the small interfering RNA (siRNA) of ICMT. METHODS: Through liposomal transfection, siRNA was transfected into human tongue squamous cell carcinoma CAL-27 and SCC-4 cells (ICMT-siRNA group) with a negative control group (transfected with NC-siRNA) and a blank control group (transfected with a transfection reagent but not with siRNA). Quantitative real-time polymerase chain reaction was performed to analyze the mRNA expression of ICMT and RhoA in each group of cells after transfection and to measure the silencing efficiency. Western blot was applied to examine the expression levels of ICMT, total RhoA, membrane RhoA, ROCK1, matrix metalloproteinase (MMP)-2, and MMP-9 proteins in each group. The migration and invasion abilities were evaluated via wound healing and Transwell motility assays. RESULTS: After CAL-27 and SCC-4 cells were transfected with ICMT-siRNA, the expression levels of ICMT genes and proteins decreased significantly in the experimental group compared with those in the negative and blank control groups (P<0.05). The mRNA and total protein expression levels of RhoA in the two groups were not significantly different (P>0.05). The expression levels of RhoA membrane protein, ROCK1, MMP-2, and MMP-9 decreased (P<0.05). The migration and invasion abilities were inhibited (P<0.05). CONCLUSIONS: The migration and invasion abilities of CAL-27 and SCC-4 cells were reduced significantly after the transfection of ICMT-siRNA, and the involved mechanism might be related to the RhoA-ROCK signaling pathway.


Subject(s)
Carcinoma, Squamous Cell , Tongue Neoplasms , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Neoplasm Invasiveness , Protein Methyltransferases , RNA, Small Interfering , Tongue , Transfection , rho-Associated Kinases
3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(1): 64-73, 2021 Feb 01.
Article in English, Chinese | MEDLINE | ID: mdl-33723939

ABSTRACT

OBJECTIVES: This study aimed to explore the effects of silencing isoprenylcysteine carboxyl methyltransfe-rase (Icmt) through small interfering RNA (siRNA) interference on the proliferation and apoptosis of tongue squamous cell carcinoma (TSCC). METHODS: Three siRNA were designed and constructed for the Icmt gene sequence and were then transfected into TSCC cells CAL-27 and SCC-4 to silence Icmt expression. The tested cells were divided as follows: RNA interference groups Icmt-siRNA-1, Icmt-siRNA-2, and Icmt-siRNA-3, negative control group, and blank control group. The transfection efficiency of siRNA was detected by the fluorescent group Cy3-labeled siRNA, and the expression of Icmt mRNA was screened by quantitive real-time polymerase chain reaction (qRT-PCR) selected the experimental group for subsequent experiments. The expression of Icmt, RhoA, Cyclin D1, p21, extracellular regulated protein kinases (ERK), and phospho-extracellular regulated protein kinases (p-ERK) were analyzed by Western blot. The proliferation abilities of TSCC cells were determined by cell counting kit-8 assay. The change in apoptosis was detected by AnnexinV-APC/propidium staining (PI) assay. Cell-cycle analysis was conducted by flow cytometry. RESULTS: The expression of Icmt mRNA and protein in TSCC cells significantly decreased after Icmt-siRNA transfection (P<0.05). No significant difference in RhoA mRNA and protein expression was detected (P>0.05), but the expression of RhoA membrane protein decreased compared with the negative control group and blank control groups (P<0.05). Cyclin D1 expression decreased, whereas p21 expression significantly increased and the relative expression of ERK protein in the experimental group did not significantly different that in the control group (P>0.05). However, the phosphorylation level of ERK was significantly reduced (P<0.05). The cell cycles of TSCC CAL-27 and SCC-4 were altered in G1/S, cell proliferation activity was inhibited, and apoptosis was induced (P<0.05). CONCLUSIONS: Silencing Icmt can effectively downregulate its expression in TSCC cells, reduce the RhoA membrane targeting localization and cell proliferation, and induce apoptosis. Thus, Icmt may be a potential gene therapy target for TSCC.


Subject(s)
Carcinoma, Squamous Cell , Tongue Neoplasms , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Protein Methyltransferases , RNA, Small Interfering , Tongue
4.
Adv Sci (Weinh) ; 7(13): 1903770, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32670753

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats) systems have been established as valuable genome-editing tools. Controlling CRISPR systems has high biological significance and this field has garnered intense interest. There is a considerable need for simple approaches with no need for protein engineering. The CRISPR systems usually require a guide RNA (gRNA) moiety to recruit and direct the nuclease complexes. In this respect, the ninhydrin (1,2,3-indantrione monohydrate) seems to have considerable potential, as yet unexploited, for modifying gRNA. In this study, ninhydrin chemistry is explored for reversible postsynthetic modification of gRNA molecules. It is further shown that ninhydrin chemistry is efficient in modulating two important CRISPR systems. Thus, ninhydrin chemistry exhibits potential applications in future chemical biology studies.

5.
Shanghai Kou Qiang Yi Xue ; 29(2): 155-161, 2020 Apr.
Article in Chinese | MEDLINE | ID: mdl-32626878

ABSTRACT

PURPOSE: To investigate the effect of human bone marrow mesenchymal stem cells (hBM-MSCs) on invasion of tongue squamous cell carcinoma cell line Cal-27 and its mechanism. METHODS: hBM-MSCs and Cal-27 were cultured respectively, and the morphology of the cells was observed under an inverted microscope. The co-cultured Cal-27 cells were obtained by co-culture of hBM-MSCs and Cal-27. The migration area of Cal-27 was observed by scratch test;transwell migration and invasion experiments were performed to observe migration and invasion of Cal-27, and a bar graph was then drawn. Fluorescence quantitative PCR was used to observe the effect of hBM-MSCs on gene expression of the tumor markers E-cadherin, twist, slug, snail, MMP-2 and MMP-9. Western blot was used to observe the effect of hBM-MSCs on protein expression of MMP-2 and MMP-9, related to the invasion of Cal-27. SPSS 19.0 software package was used for statistical analysis of the data. RESULTS: Under the influence of hBM-MSCs, the invasion of Cal-27 was promoted, accompanied by down-regulation of E-cadherin, up-regulation of twist, slug, snail, MMP-2, MMP-9 and up-regulation of MMP-2 and MMP-9 expression. CONCLUSIONS: hBM-MSCs can promote invasion of Cal-27 cells, which may be related to up-regulation of the expression of tumor markers related to invasion of Cal-27 cells.


Subject(s)
Carcinoma, Squamous Cell , Mesenchymal Stem Cells , Tongue Neoplasms , Bone Marrow Cells , Cell Line , Cell Line, Tumor , Humans , Matrix Metalloproteinase 2
6.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 38(2): 177-184, 2020 Apr 01.
Article in Chinese | MEDLINE | ID: mdl-32314892

ABSTRACT

OBJECTIVE: This study aimed to explore the effects of silencing farnesyltransferase (FTase) on the migration and invasion of tongue squamous cell carcinoma (TSCC) through RNA interference. METHODS: TSCC cells (CAL27 and SCC-4) were cultured in vitro and then transfected with siRNA to silence FTase expression. The tested cells were categorized as follows: experimental group (three RNA interference groups), negative control group, and blank control group. mRNA expression of FTase and HRAS in each group was analyzed by quantitative real-time polymerase chain reaction. On the basis of FTase mRNA expression, the optimum interference group (highest silencing efficiency) was selected as the experimental group for further study. The protein expression of FTase, HRAS, p65, p-p65(S536), matrix metalloprotein-9 (MMP-9), hypoxia inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) was analyzed by Western blot. The invasion and migration abilities of TSCC cells were determined by Transwell invasion assay and cell wound healing assay. RESULTS: The mRNA and protein expression of FTase in the experimental group decreased compared with that in the negative control and blank control groups (P<0.05). The mRNA and protein expression of HRAS was not significantly different among the groups (P>0.05). In the experimental group, the protein expression of p-p65(S536), MMP-9, HIF-1α, and VEGF decreased (P<0.05), whereas that of p65 had no significant change (P>0.05). The migration and invasion abilities of the experimental group were inhibited significantly (P<0.05). CONCLUSIONS: Silencing FTase in vitro could effectively downregulate its expression in TSCC cell lines and reduce the migration and invasion abilities to a certain extent. FTase could be a new gene therapy target of TSCC, and this research provided a new idea for the clinical treatment of TSCC.


Subject(s)
Carcinoma, Squamous Cell , Tongue Neoplasms , Cell Line, Tumor , Cell Movement , Cell Proliferation , Farnesyltranstransferase , Humans , Neoplasm Invasiveness , Vascular Endothelial Growth Factor A
7.
Nat Commun ; 11(1): 91, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31900392

ABSTRACT

Prokaryotes use repetitive genomic elements termed CRISPR (clustered regularly interspaced short palindromic repeats) to destroy invading genetic molecules. Although CRISPR systems have been widely used in DNA and RNA technology, certain adverse effects do occur. For example, constitutively active CRISPR systems may lead to a certain risk of off-target effects. Here, we introduce post-synthetic masking and chemical activation of guide RNA (gRNA) to controlling CRISPR systems. An RNA structure profiling probe (2-azidomethylnicotinic acid imidazolide) is used. Moreover, we accomplish conditional control of gene editing in live cells. This proof-of-concept study demonstrates promising potential of chemical activation of gRNAs as a versatile tool for chemical biology.


Subject(s)
Gene Editing , RNA, Guide, Kinetoplastida/metabolism , RNA/metabolism , CRISPR-Cas Systems , Endonucleases/metabolism , HeLa Cells , Humans , RNA/genetics , RNA, Guide, Kinetoplastida/genetics
8.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(2): 143-148, 2019 Apr 01.
Article in Chinese | MEDLINE | ID: mdl-31168979

ABSTRACT

OBJECTIVE: This study aimed to explore the influence of Rce1 on invasion and migration of tongue squamous cell carcinoma cells by silencing the Rce1 gene with RNA interference. METHODS: The tongue squamous cell carcinoma Cal-27 and SCC-4 cells were cultured in vitro. The small interfering RNA (siRNA) of the Rce1 gene was designed, and the Rcel gene expression was silenced vialiposome transfection. According to the siRNA transfected by liposome, the experimental group was divided into three groups, namely, Rce1-siRNA-1, Rce1-siRNA-2, and Rce1-siRNA-3 groups. Negative control group was transfected by siCON, and the blank control group was untransfected by siRNA. The Rce1, RhoA, and K-Ras gene expression levels in each group were analyzed by real-time quantitative polymerase chain reaction. The Rce1, RhoA, K-Ras, MMP-2, and MMP-9 protein expression levels were analyzed by Western blot. The invasiveness of tongue cancer cell Cal-27 and SCC-4 were determined by Transwell invasion assay, and cell migration assay was performed by cell scratch assay. RESULTS: Real-time quantitative polymerase chain reaction and Western blot results showed that compared with the negative and blank control groups, the Rce1 gene and protein expression levels in three experimental groups decreased (P<0.05). The RhoA, K-Ras gene and protein expression levels were insignificantly different among groups (P>0.05). Meanwhile, the MMP-2 and MMP-9 expression levels decreased (P<0.05). Transwell invasion assay results showed that the total number of cells in the PET film of the experimental groups was significantly decreased compared with the control group (P<0.05). The cell scratch test showed that the cell closure time of the scratch in the interference group was significantly longer than those in the control and blank groups (P<0.05). CONCLUSIONS: Silencing Rce1 in vitro can effectively downregulate its expression in tongue squamous cell carcinoma cells Cal-27 and SCC-4 and reduce the migration and invasion abilities of these cells.


Subject(s)
Endopeptidases , RNA Interference , Tongue Neoplasms , Cell Line, Tumor , Cell Movement , Cell Proliferation , Endopeptidases/metabolism , Humans , Neoplasm Invasiveness , RNA, Small Interfering , Tongue Neoplasms/metabolism , Tongue Neoplasms/therapy , Transfection
9.
J Am Chem Soc ; 140(46): 15842-15849, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30380854

ABSTRACT

In mammals, 5-formylcytosine (5fC) has been identified as an important mark, which plays significant roles in active DNA demethylation and also in epigenetic regulation. It is therefore important to target this epigenetic mark as well as manipulating DNA-protein interactions at this site. A unique feature of 5fC is the presence of a formyl group at the C-5 position. In the current study, we introduce supramolecular coordination chemistry for reversible regulation of DNA-protein interactions on this mark. We have designed and synthesized the 2-(aminooxy)- N-(quinolin-8-yl)acetamide (AQA), which functions well in selective labeling of 5fC mark. Using this feature, the association and disassociation of metal ion supplementation allow blocking and deblocking of DNA-protein interactions. In addition, we synthesized a close analogue of AQA by replacing the nitrogen atom in the quinoline ring with a CH group. Importantly, the regulatory effects of those metal ion supplementations were completely erased. On the basis of the combined information, we propose a conformational flexibility in a side arm in response to switched coordination. In the absence of coordinating interaction, the flexible side arm probably takes on an extended conformation and points away from the hydrogen bonding cavity. Importantly, coordinating interaction is effective in imposing a restrained geometry to this side arm, with the quinoline ring being oriented opposite the complementary nucleobase. Moreover, the coordination-induced activity control can be reversed by supplementation with a number of chelating agents. The concept described is unique in installing an auxiliary side arm with bending flexibility to control oligonucleotide functions. Finally, these findings show promising potential of supramolecular coordination chemistry for DNA epigenetics.


Subject(s)
Cytosine/analogs & derivatives , DNA/chemistry , DNA/metabolism , Proteins/metabolism , Cytosine/chemistry , Cytosine/metabolism , DNA/genetics , Epigenesis, Genetic/genetics , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Proteins/chemistry
10.
Adv Sci (Weinh) ; 5(7): 1800231, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30027051

ABSTRACT

As a left-handed helical structure, Z-DNA is biologically active and it may be correlated with transcription and genome stability. Until recently, it remained a significant challenge to control the B/Z-DNA transition under physiological conditions. The current study represents the first to reversibly control B/Z-DNA transition using cucurbit[7]uril-based supramolecular approach. It is demonstrated that cucurbit[7]uril can encapsulate the central butanediamine moiety [HN(CH2)4NH] and reverses Z-DNA caused by spermine back to B-DNA. The subsequent treatment with 1-adamantanamine disassembles the cucurbit[7]uril/spermine complex and readily induces reconversion of B- into Z-DNA. The DNA conformational change is unequivocally demonstrated using different independent methods. Direct evidence for supramolecular interactions involved in DNA conformational changes is further provided. These findings can therefore open a new route to control DNA helical structure in a reversible way.

11.
J Am Chem Soc ; 139(46): 16903-16912, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29091409

ABSTRACT

5-Formylcytosine (5fC) is identified as one of the key players in active DNA demethylation and also as an epigenetic mark in mammals, thus representing a novel attractive target to chemical intervention. The current study represents an attempt to develop a reversible 5fC-targeted intervention tool. A supramolecular aldehyde reactive probe was therefore introduced for selective conversion of the 5fC to 5fC-AD nucleotide. Using various methods, we demonstrate that cucurbit[7]uril (CB7) selectively targets the 5fC-AD nucleotide in DNA, however, the binding of CB7 to 5fC-AD does not affect the hydrogen bonding properties of natural nucleobases in duplex DNA. Importantly, CB7-driven host-guest chemistry has been applied for reversible intervention of a variety of 5fC-targeted biochemical reactions, including restriction endonuclease digestion, DNA polymerase elongation, and polymerase chain reaction. On the basis of the current study, the macrocyclic CB7 creates obstructions that, through steric hindrance, prevent the enzyme from binding to the substrate, whereas the CB7/5fC-AD host-guest interactions can be reversed by treatment with adamantanamine. Moreover, fragment- and site-specific identification of 5fC modification in DNA has been accomplished without sequence restrictions. These findings thus show promising potential of host-guest chemistry for DNA/RNA epigenetics.


Subject(s)
Adamantane/metabolism , Aldehydes/metabolism , Bridged-Ring Compounds/metabolism , Cytosine/analogs & derivatives , Imidazoles/metabolism , Molecular Probes/metabolism , Nucleosides/metabolism , Adamantane/chemistry , Aldehydes/chemistry , Bridged-Ring Compounds/chemistry , Cytosine/chemistry , Cytosine/metabolism , DNA/chemistry , DNA/metabolism , Imidazoles/chemistry , Molecular Probes/chemistry , Molecular Structure , Nucleosides/chemistry
12.
Cell Chem Biol ; 23(9): 1113-1122, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27617851

ABSTRACT

In the present study, our bioinformatics analysis first reveals the existence of a conserved guanine-rich sequence within the Zaire ebolavirus L gene. Using various methods, we show that this sequence tends to fold into G-quadruplex RNA. TMPyP4 treatment evidently inhibits L gene expression at the RNA level. Moreover, the mini-replicon assay demonstrates that TMPyP4 effectively inhibits the artificial Zaire ebolavirus mini-genome and is a more potent inhibitor than ribavirin. Although TMPyP4 treatment reduced the replication of the mutant mini-genome when G-quadruplex formation was abolished in the L gene, its inhibitory effect was significantly alleviated compared with wild-type. Our findings thus provide the first evidence that G-quadruplex RNA is present in a negative-sense RNA virus. Finally, G-quadruplex RNA stabilization may represent a new therapeutic strategy against Ebola virus disease.


Subject(s)
Ebolavirus/drug effects , Ebolavirus/genetics , G-Quadruplexes/drug effects , Porphyrins/pharmacology , RNA, Viral/drug effects , Gene Expression Regulation, Viral/drug effects , Gene Expression Regulation, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Virus Replication/drug effects
13.
Sci Adv ; 2(4): e1501535, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27051880

ABSTRACT

G-quadruplex (G4) is one of the most important secondary structures in nucleic acids. Until recently, G4 RNAs have not been reported in any ribovirus, such as the hepatitis C virus. Our bioinformatics analysis reveals highly conserved guanine-rich consensus sequences within the core gene of hepatitis C despite the high genetic variability of this ribovirus; we further show using various methods that such consensus sequences can fold into unimolecular G4 RNA structures, both in vitro and under physiological conditions. Furthermore, we provide direct evidences that small molecules specifically targeting G4 can stabilize this structure to reduce RNA replication and inhibit protein translation of intracellular hepatitis C. Ultimately, the stabilization of G4 RNA in the genome of hepatitis C represents a promising new strategy for anti-hepatitis C drug development.


Subject(s)
G-Quadruplexes , Hepacivirus/drug effects , Hepatitis C/virology , Viral Core Proteins/chemistry , Conserved Sequence , Genetic Therapy , Genome, Viral , Hepatitis C/drug therapy , Humans , Nucleic Acid Conformation , RNA, Viral/drug effects , Small Molecule Libraries/pharmacology , Viral Core Proteins/antagonists & inhibitors , Viral Core Proteins/genetics
14.
Chem Biodivers ; 6(12): 2200-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20020452

ABSTRACT

In an attempt to combine the HIV-inhibitory capacity of different 2',3'-dideoxynucleoside (ddN) analogs, we have designed and synthesized several dimers of [AZT]-[AZT] and [AZT]-[d4T]. In addition, we also synthesized the dimers of 1-(1H-benzimidazol-1-yl)-1-deoxy-beta-D-ribofuranose. The in vitro anti-HIV activity of these compounds on a pseudotype virus, pNL4-3.Luc.R-E-, in the 293T cells has been determined. Among these compounds, 2,2'-(propane-1,3-diyl)bis[1-(beta-D-ribofuranosyl)-1H-benzimidazole] showed the highest anti-HIV activity with similar effect as AZT.


Subject(s)
Anti-HIV Agents/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis , Dideoxynucleosides/chemistry , Nucleosides/chemical synthesis , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Benzimidazoles/pharmacology , Cell Line , Dideoxynucleosides/chemical synthesis , Dideoxynucleosides/pharmacology , Dimerization , HIV Core Protein p24/metabolism , Humans , Nucleosides/chemistry , Nucleosides/pharmacology , Zidovudine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...