Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
World J Gastrointest Surg ; 16(6): 1845-1856, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983334

ABSTRACT

BACKGROUND: To compare the efficacy and safety of total neoadjuvant therapy (TNT) and neoadjuvant chemoradiotherapy (nCRT) in the treatment of middle and low locally advanced rectal cancer. Our study will systematically collect and integrate studies to evaluate the ability of these two treatments to improve tumor shrinkage rates, surgical resection rates, tumor-free survival, and severe adverse events. AIM: To provide clinicians and patients with more reliable treatment options to optimize treatment outcomes and quality of life for patients with locally advanced rectal cancer by comparing the advantages and disadvantages of the two treatment options. METHODS: A full search of all clinical studies on the effectiveness and safety of TNT and nCRT for treating locally advanced rectal cancer identified in Chinese (CNKI, Wanfang, China Biomedical Literature Database) and English (PubMed, Embase) databases was performed. Two system assessors independently screened the studies according to the inclusion and exclusion criteria. Quality evaluation and data extraction were performed for the included literature. We used RevMan 5.3 software to perform a meta-analysis of the pathologic complete response (pCR) rate, T stage degradation rate, resection 0 (R0) rate, anal grade 3/4 acute toxicity rate, perioperative complications, overall survival (OS), and disease-free survival (DFS) in the TNT and nCRT groups. RESULTS: Finally, 14 studies were included, six of which were randomized controlled studies. A total of 3797 patients were included, including 1865 in the TNT group and 1932 in the nCRT group. The two sets of baseline data were comparable. The results of the meta-analysis showed that the pCR rate [odds ratio (OR) = 1.57, 95% confidence interval (CI): 1.30-1.90, P < 0.00001], T stage degradation rate (OR = 2.16, 95%CI: 1.63-2.57, P < 0.00001), and R0 resection rate (OR = 1.42, 95%CI: 1.09-1.85, P = 0.009) were significantly greater in the nCRT group than in the nCRT group. There was no significant difference in the incidence of grade 3/4 acute toxicity or perioperative complications between the two groups. The 5-year OS [hazard ratio (HR) = 0.84, 95%CI: 0.69-1.02, P = 0.08] and DFS (HR = 0.94, 95%CI: 0.03-1.39, P = 0.74) of the TNT group were similar to those of the nCRT group. CONCLUSION: TNT has greater clinical efficacy and safety than nCRT in the treatment of locally advanced rectal cancer.

2.
World J Gastrointest Oncol ; 16(6): 2816-2825, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994137

ABSTRACT

BACKGROUND: To investigate the relationship between interstitial maturity and prognosis of colorectal cancer. AIM: To examine the correlation between interstitial maturity and the prognosis of colorectal cancer. METHODS: The paper database PubMed, EMBASE, Cochranelibrary, Springerlink, CNKI, and Wanfang database were searched until December 2023. "tumor stroma maturity" "desmoplastic stroma reaction" "desmoplastic reaction" "stroma reaction" "degree of stroma reaction "" stroma classification" "stroma density" "colorectal cancer" "colon cancer" "rectal cancer" "prognosis" were searched for the search terms. Two system assessors independently screened the literature quality according to the inclusion exclusion criteria, Quality evaluation and data extraction were performed for the included literatures, and meta-analysis was performed for randomized control trials included at using Review Manager 5.2 software. RESULTS: Finally, data of 9849 patients with colorectal cancer from 19 cosets in 15 literatures were included, including 4339 patients with mature type (control group), 3048 patients with intermediate type (intermediate group) and 2456 patients with immature type (immature group). The results of meta-analysis showed: Relapse-free survival [hazard ratio (HR) = 2.66, 95% confidence interval (CI): 2.30-3.08; P < 0.00001], disease-free survival (HR = 3.68, 95%CI: 2.33-5.81; P < 0.00001) and overall survival (HR = 1.70, 95%CI: 1.53-1.87; P < 0.00001) were significantly lower than those in mature group (control group); relapse-free survival (HR = 1.36, 95%CI: 1.17-1.59; P < 0.0001) and disease-free survival rate (HR = 1.85, 95%CI: 1.53-2.24; P < 0.0001) was significantly lower than the mature group (control group). CONCLUSION: There is the correlation between tumor interstitial maturity and survival prognosis of colorectal cancer, and different degrees of tumor interstitial maturity have a certain impact on the quality of life of colorectal cancer patients.

3.
Materials (Basel) ; 14(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34639995

ABSTRACT

In this work, a kind of Gd/Cr codoped Bi3TiNbO9 Aurivillius phase ceramic with the formula of Bi2.8Gd0.2TiNbO9 + 0.2 wt% Cr2O3 (abbreviated as BGTN-0.2Cr) was prepared by a conventional solid-state reaction route. Microstructures and electrical conduction behaviors of the ceramic were investigated. XRD and SEM detection found that the BGTN-0.2Cr ceramic was crystallized in a pure Bi3TiNbO9 phase and composed of plate-like grains. A uniform element distribution involving Bi, Gd, Ti, Nb, Cr, and O was identified in the ceramic by EDS. Because of the frequency dependence of the conductivity between 300 and 650 °C, the electrical conduction mechanisms of the BGTN-0.2Cr ceramic were attributed to the jump of the charge carriers. Based on the correlated barrier hopping (CBH) model, the maximum barrier height WM, dc conduction activation energy Ec, and hopping conduction activation energy Ep were calculated with values of 0.63 eV, 1.09 eV, and 0.73 eV, respectively. Impedance spectrum analysis revealed that the contribution of grains to the conductance increased with rise in temperature; at high temperatures, the conductance behavior of grains deviated from the Debye relaxation model more than that of grain boundaries. Calculation of electrical modulus further suggested that the degree of interaction between charge carriers ß tended to grow larger with rising temperature. In view of the approximate relaxation activation energy (~1 eV) calculated from Z″ and M″ peaks, the dielectric relaxation process of the BGTN-0.2Cr ceramic was suggested to be dominated by the thermally activated motion of oxygen vacancies as defect charge carriers. Finally, a high piezoelectricity of d33 = 18 pC/N as well as a high resistivity of ρdc = 1.52 × 105 Ω cm at 600 °C provided the BGTN-0.2Cr ceramic with promising applications in the piezoelectric sensors with operating temperature above 600 °C.

4.
Materials (Basel) ; 14(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34683819

ABSTRACT

In this work, SrBi4Ti4O15 (SBT) high-temperature piezoelectric ceramics with the addition of different oxides (Gd2O3, CeO2, MnO2 and Cr2O3) were fabricated by a conventional solid-state reaction route. The effects of oxide additives on the phase structures and electrical properties of the SBT ceramics were investigated. Firstly, X-ray diffraction analysis revealed that all these oxides-modified SBT ceramics prepared presented a single SrBi4Ti4O15 phase with orthorhombic symmetry and space group of Bb21m, the change in cell parameters indicated that these oxide additives had diffused into the crystalline lattice of SBT and formed solid solutions with it. The SBT ceramics with the addition of MnO2 achieved a high relative density of up to 97%. The temperature dependence of dielectric constant showed that the addition of Gd2O3 could increase the TC of SBT. At a low frequency of 100 Hz, those dielectric loss peaks appearing around 500 °C were attributed to the space-charge relaxation as an extrinsic dielectric response. The synergetic doping of CeO2 and Cr2O3 could reduce the space-charge-induced dielectric relaxation of SBT. The piezoelectricity measurement and electro-mechanical resonance analysis found that Cr2O3 can significantly enhance both d33 and kp of SBT, and produce a higher phase-angle maximum at resonance. Such an enhanced piezoelectricity was attributed to the further increased orthorhombic distortion after Ti4+ at B-site was substituted by Cr3+. Among these compositions, Sr0.92Gd0.053Bi4Ti4O15 + 0.2 wt% Cr2O3 (SGBT-Cr) presented the best electrical properties including TC = 555 °C, tan δ = 0.4%, kp = 6.35% and d33 = 28 pC/N, as well as a good thermally-stable piezoelectricity that the value of d33 was decreased by only 3.6% after being annealed at 500 °C for 4 h. Such advantages provided this material with potential applications in the high-stability piezoelectric sensors operated below 500 °C.

5.
Opt Express ; 28(5): 6684-6695, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225910

ABSTRACT

The Tm:CaF2 single-crystal fibers were successfully grown by modified temperature gradient technique method. The J-O intensity parameters, spontaneous radiative transition rates, radiative lifetimes and fluorescence branching ratios of Tm3+ were calculated with Judd-Ofelt theory. A systematic study of the fluorescence characteristics has been carried out. Simulated emission cross-sections of the 3F4 → 3H6 transition were calculated to be 6.68×10-21 cm-2 and 4.65×10-21cm-2 for crystal doped with 3 at.% and 4 at.% Tm3+. The 64.4% slope efficiency with output power of 2.23W was achieved in 3 at.% Tm:CaF2 single-crystal fiber. The slope efficiency decreased to 44.5% and maximum output power decreased to 1.65W in 4 at.% Tm:CaF2 single-crystal fiber. Obtained results show that Tm-doped CaF2 single-crystal fibers are promising materials for IR laser action generation.

6.
Oncol Lett ; 13(4): 2777-2783, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28454466

ABSTRACT

The present study aimed to reveal the molecular characteristics induced by radiotherapy in rectal cancer at the transcriptome level. Microarray data (ID, GSE26027) downloaded from the Gene Expression Omnibus database were re-analyzed to identify differentially expressed genes (DEGs) between rectal cancer tissues during and prior to radiotherapy. The DEGs were then inputted into the database for annotation, visualization and integrated discovery, an online tool to perform enrichment analyses, and into the search tool for the retrieval of interacting genes/proteins database to identify protein-protein interactions (PPIs). Subsequently, a PPI network was constructed, which was screened for densely connected modules. Furthermore, protein domain enrichment analysis was performed. In total, 690 DEGs, including 179 upregulated and 511 downregulated DEGs, were found in rectal cancer tissues during and prior to radiotherapy. The upregulated DEGs were significantly enriched in 'positive regulation of transport' and 'regulation of cardiac muscle contraction', while the downregulated DEGs were most markedly enriched in 'cell migration', 'cell-cell signaling', 'extracellular matrix organization' and 'blood vessel development', including prostaglandin-endoperoxide synthase 2, transforming growth factor ß-induced, 68 kDa endothelin receptor type A, brain-derived neurotrophic factor, TIMP metallopeptidase inhibitor 1, and serpin family E member 1, which were the top 6 hub nodes in the PPI network. Furthermore, 2 protein domains were significantly enriched by PPI modules, including: The collagen triple helix repeat (CTHR) family members collagen type (COL) 5A2, COL9A3, COL6A3, COL21A1, COL5A3, COL11A1, COL7A1 and CTHR-containing-1; and the olfactory receptor family (OR) members OR7E24, OR7A17, OR6A2, OR1F1, OR10H3 and OR7A10. A total of 7 upregulated DEGs were characterized as tumor suppressor genes, and 8 downregulated DEGs were characterized as oncogenes. The biological processes or protein domains enriched by upregulated or downregulated DEGs may improve the understanding of molecular characteristics in response to radiotherapy.

7.
Microb Biotechnol ; 3(1): 65-73, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21255307

ABSTRACT

There is an increasing need for the use of biocatalysis to obtain enantiopure compounds as chiral building blocks for drug synthesis such as antibiotics. The principal findings of this study are: (i) the complete sequenced genomes of Bacillus cereus ATCC 14579 and Thermoanaerobacter tengcongensis MB4 contain a hitherto undescribed enantioselective and alkaliphilic esterase (BcEST and TtEST respectively) that is specific for the production of (R)-2-benzyloxy-propionic acid ethyl ester, a key intermediate in the synthesis of levofloxacin, a potent antibiotic; and (ii) directed evolution targeted for increased thermostability of BcEST produced two improved variants, but in either case the 3-5 °C increase in the apparent melting temperature (T(m)) of the mutants over the native BcEST that has a T(m) of 50 °C was outperformed by TtEST, a naturally occurring homologue with a T(m) of 65 °C. Protein modelling of BcEST mapped the S148C and K272R mutations at protein surface and the I88T and Q110L mutations at more buried locations. This work expands the repertoire of characterized members of the α/ß-fold hydrolase superfamily. Further, it shows that genome mining is an economical option for new biocatalyst discovery and we provide a rare example of a naturally occurring thermostable biocatalyst that outperforms experimentally evolved homologues that carry out the same hydrolysis.


Subject(s)
Bacillus cereus/enzymology , Esterases/genetics , Esterases/metabolism , Esters/metabolism , Stereoisomerism , Thermoanaerobacter/enzymology , Amino Acid Substitution/genetics , Bacillus cereus/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Directed Molecular Evolution , Enzyme Stability , Esterases/chemistry , Esters/chemistry , Molecular Sequence Data , Protein Stability , Sequence Analysis, DNA , Temperature , Thermoanaerobacter/genetics , Transition Temperature
8.
Appl Microbiol Biotechnol ; 84(5): 867-76, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19444442

ABSTRACT

Recombinant Escherichia coli whole-cell biocatalysts harboring either a Baeyer-Villiger monooxygenase or ferulic acid decarboxylase were employed in organic-aqueous two-phase bioreactor systems. The feasibility of the bioproduction of water-insoluble products, viz., lauryl lactone from cyclododecanone and 4-vinyl guaiacol from ferulic acid were examined. Using hexadecane as the organic phase, 10 approximately 16 g of lauryl lactone were produced in a 3-l bioreactor that operated in a semicontinuous mode compared to 2.4 g of product in a batch mode. For the decarboxylation of ferulic acid, a new recombinant biocatalyst, ferulic acid decarboxylase derived from Bacillus pumilus, was constructed. Selected solvents as well as other parameters for in situ recovery of vinyl guaiacol were investigated. Up to 13.8 g vinyl guaiacol (purity of 98.4%) were obtained from 25 g of ferulic acid in a 2-l working volume bioreactor by using octane as organic phase. These selected examples highlight the superiority of the two-phase biotransformations systems over the conventional batch mode.


Subject(s)
Escherichia coli/metabolism , Guaiacol/analogs & derivatives , Industrial Microbiology/methods , Lactones/metabolism , Bacillus/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomass , Bioreactors/microbiology , Biotransformation , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Escherichia coli/genetics , Genetic Engineering , Guaiacol/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism
9.
J Am Chem Soc ; 131(25): 8848-54, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19385644

ABSTRACT

Cyclohexanone monooxygenase (CHMO) is a flavoprotein that carries out the archetypical Baeyer-Villiger oxidation of a variety of cyclic ketones into lactones. Using NADPH and O(2) as cosubstrates, the enzyme inserts one atom of oxygen into the substrate in a complex catalytic mechanism that involves the formation of a flavin-peroxide and Criegee intermediate. We present here the atomic structures of CHMO from an environmental Rhodococcus strain bound with FAD and NADP(+) in two distinct states, to resolutions of 2.3 and 2.2 A. The two conformations reveal domain shifts around multiple linkers and loop movements, involving conserved arginine 329 and tryptophan 492, which effect a translation of the nicotinamide resulting in a sliding cofactor. Consequently, the cofactor is ideally situated and subsequently repositioned during the catalytic cycle to first reduce the flavin and later stabilize formation of the Criegee intermediate. Concurrent movements of a loop adjacent to the active site demonstrate how this protein can effect large changes in the size and shape of the substrate binding pocket to accommodate a diverse range of substrates. Finally, the previously identified BVMO signature sequence is highlighted for its role in coordinating domain movements. Taken together, these structures provide mechanistic insights into CHMO-catalyzed Baeyer-Villiger oxidation.


Subject(s)
Flavin-Adenine Dinucleotide/metabolism , NADP/metabolism , Oxygenases/chemistry , Oxygenases/metabolism , Rhodococcus/enzymology , Amino Acid Sequence , Crystallography, X-Ray , Flavin-Adenine Dinucleotide/chemistry , Models, Molecular , NADP/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Substrate Specificity
10.
Antonie Van Leeuwenhoek ; 94(4): 563-71, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18704748

ABSTRACT

A polygalacturonase from the filamentous fungus Rhizopus oryzae strain sb (NRRL 29086), previously shown to be effective in the retting of flax fibers, was shown by the analysis of its reaction products on polygalacturonic acid to be an endo-type. By zymogram analysis, the enzyme in the crude culture filtrate appeared as two active species of 37 and 40 kD. The endopolygalacturonase-encoding gene was cloned in Escherichia coli and its translated 383-amino acid sequence found to be identical to that of a presumed exopolygalacturonase found in R. oryzae strain YM9901 and 96% identical to a hypothetical protein (RO3G_04731.1) in the sequenced genome of R. oryzae strain 99-880. Phylogenetic analysis revealed the presence of an unique cluster of Rhizopus polygalacturonase sequences that are separate from other fungal polygalacturonases. Conservation of 12 cysteines appears to be a special feature of this family of Rhizopus polygalacturonase sequences.


Subject(s)
Flax/metabolism , Fungal Proteins/genetics , Industrial Microbiology , Polygalacturonase/genetics , Rhizopus/enzymology , Textiles/microbiology , Cloning, Molecular , Fungal Proteins/metabolism , Molecular Sequence Data , Phylogeny , Polygalacturonase/chemistry , Polygalacturonase/metabolism , Rhizopus/classification , Rhizopus/genetics
11.
Appl Environ Microbiol ; 72(4): 2707-20, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16597975

ABSTRACT

Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that offer the prospect of high chemo-, regio-, and enantioselectivity in the organic synthesis of lactones or esters from a variety of ketones. In this study, we have cloned, sequenced, and overexpressed in Escherichia coli a new BVMO, cyclopentadecanone monooxygenase (CpdB or CPDMO), originally derived from Pseudomonas sp. strain HI-70. The 601-residue primary structure of CpdB revealed only 29% to 50% sequence identity to those of known BVMOs. A new sequence motif, characterized by a cluster of charged residues, was identified in a subset of BVMO sequences that contain an N-terminal extension of approximately 60 to 147 amino acids. The 64-kDa CPDMO enzyme was purified to apparent homogeneity, providing a specific activity of 3.94 micromol/min/mg protein and a 20% yield. CPDMO is monomeric and NADPH dependent and contains approximately 1 mol flavin adenine dinucleotide per mole of protein. A deletion mutant suggested the importance of the N-terminal 54 amino acids to CPDMO activity. In addition, a Ser261Ala substitution in a Rossmann fold motif resulted in an improved stability and increased affinity of the enzyme towards NADPH compared to the wild-type enzyme (K(m) = 8 microM versus K(m) = 24 microM). Substrate profiling indicated that CPDMO is unusual among known BVMOs in being able to accommodate and oxidize both large and small ring substrates that include C(11) to C(15) ketones, methyl-substituted C(5) and C(6) ketones, and bicyclic ketones, such as decalone and beta-tetralone. CPDMO has the highest affinity (K(m) = 5.8 microM) and the highest catalytic efficiency (k(cat)/K(m) ratio of 7.2 x 10(5) M(-1) s(-1)) toward cyclopentadecanone, hence the Cpd designation. A number of whole-cell biotransformations were carried out, and as a result, CPDMO was found to have an excellent enantioselectivity (E > 200) as well as 99% S-selectivity toward 2-methylcyclohexanone for the production of 7-methyl-2-oxepanone, a potentially valuable chiral building block. Although showing a modest selectivity (E = 5.8), macrolactone formation of 15-hexadecanolide from the kinetic resolution of 2-methylcyclopentadecanone using CPDMO was also demonstrated.


Subject(s)
Fatty Acids/metabolism , Ketones/metabolism , Mixed Function Oxygenases , Pseudomonas/enzymology , Amino Acid Sequence , Cloning, Molecular , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Fatty Acids/chemistry , Hydrocarbons, Alicyclic/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Oxidation-Reduction , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas/growth & development , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Substrate Specificity
12.
J Org Chem ; 68(16): 6222-8, 2003 Aug 08.
Article in English | MEDLINE | ID: mdl-12895054

ABSTRACT

Optically pure or highly enantiomerically enriched 4- and 5-substituted lactones are rather difficult to obtain. Chemical or enzymatic syntheses alone are not particularly successful. A combination of chemical catalysis and biocatalysis, however, provides a convenient route to a variety of these useful chiral compounds. In this paper we describe the synthesis of several optically pure 4- and 5-substituted lactones obtained via whole cell-catalyzed Baeyer-Villiger oxidations of highly enantiomerically enriched 3-alkyl cyclic ketones. Such chiral ketones are readily accessed by recently developed copper-catalyzed asymmetric conjugate reductions of the corresponding enones. A very high proximal regioselectivity and complete chirality transfer was obtained by employing biological Baeyer-Villiger oxidations, using recombinant E. coli strains that overexpress cyclopentanone monooxygenase (CPMO). A comparative study showed that CPMO gives superior results to those obtained with cyclohexanone monooxygenase (CHMO) catalyzed oxidations.


Subject(s)
Lactones/chemical synthesis , Catalysis , Indicators and Reagents , Lactones/chemistry , Magnetic Resonance Spectroscopy , Oxidation-Reduction
13.
Appl Environ Microbiol ; 68(11): 5671-84, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12406764

ABSTRACT

Cyclopentanone 1,2-monooxygenase, a flavoprotein produced by Pseudomonas sp. strain NCIMB 9872 upon induction by cyclopentanol or cyclopentanone (M. Griffin and P. W. Trudgill, Biochem. J. 129:595-603, 1972), has been utilized as a biocatalyst in Baeyer-Villiger oxidations. To further explore this biocatalytic potential and to discover new genes, we have cloned and sequenced a 16-kb chromosomal locus of strain 9872 that is herein reclassified as belonging to the genus COMAMONAS: Sequence analysis revealed a cluster of genes and six potential open reading frames designated and grouped in at least four possible transcriptional units as (orf11-orf10-orf9)-(cpnE-cpnD-orf6-cpnC)-(cpnR-cpnB-cpnA)-(orf3-orf4 [partial 3' end]). The cpnABCDE genes encode enzymes for the five-step conversion of cyclopentanol to glutaric acid catalyzed by cyclopentanol dehydrogenase, cyclopentanone 1,2-monooxygenase, a ring-opening 5-valerolactone hydrolase, 5-hydroxyvalerate dehydrogenase, and 5-oxovalerate dehydrogenase, respectively. Inactivation of cpnB by using a lacZ-Km(r) cassette resulted in a strain that was not capable of growth on cyclopentanol or cyclopentanone as a sole carbon and energy source. The presence of sigma(54)-dependent regulatory elements in front of the divergently transcribed cpnB and cpnC genes supports the notion that cpnR is a regulatory gene of the NtrC type. Knowledge of the nucleotide sequence of the cpn genes was used to construct isopropyl-beta-thio-D-galactoside-inducible clones of Escherichia coli cells that overproduce the five enzymes of the cpn pathway. The substrate specificities of CpnA and CpnB were studied in particular to evaluate the potential of these enzymes and establish the latter recombinant strain as a bioreagent for Baeyer-Villiger oxidations. Although frequently nonenantioselective, cyclopentanone 1,2-monooxygenase was found to exhibit a broader substrate range than the related cyclohexanone 1,2-monooxygenase from Acinetobacter sp. strain NCIMB 9871. However, in a few cases opposite enantioselectivity was observed between the two biocatalysts.


Subject(s)
Comamonas/genetics , Cyclopentanes/metabolism , Multigene Family , Oxygenases/genetics , Catalysis , Chromosomes, Bacterial , Cloning, Molecular , Comamonas/classification , Comamonas/metabolism , Escherichia coli/genetics , Genes, Bacterial , Ketones/metabolism , Molecular Weight , Oxidation-Reduction , Oxygenases/metabolism , Substrate Specificity , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...