Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
World J Clin Cases ; 10(17): 5741-5747, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35979098

ABSTRACT

BACKGROUND: Modified radical mastectomy (MRM) is the most common surgical treatment for breast cancer. General anesthesia poses a challenge in fragile MRM patients, including cardiovascular instability, insufficient postoperative pain control, nausea and vomiting. Thoracic paravertebral block (TPVB) is adequate for simple mastectomy, but its combination with interscalene brachial plexus block (IBPB) has not yet been proved to be an effective anesthesia method for MRM. CASE SUMMARY: We describe our experience of anesthesia and pain management in 10 patients with multiple comorbidities. An ultrasound-guided TPVB was placed at T2-T3 and T5-T6, and combined with IBPB, with administration of 10, 15 and 5 mL of 0.5% ropivacaine, respectively. A satisfactory anesthetic effect was proved by the absence of ipsilateral tactile sensation within 30 min. Propofol 3 mg/kg/h and oxygen supplementation via a nasal cannula were administered during surgery. None of the patients required additional narcotics, vasopressors, or conversion to general anesthesia. The maximum pain score was 2 on an 11-point numerical rating scale. Two patients required one dose of celecoxib 8 h postoperatively and none reported nausea or emesis. CONCLUSION: This case series demonstrated that combined two-site TPVB and small-volume IBPB with sedation can be used as an alternative anesthetic modality for MRM, providing good postoperative analgesia.

2.
Mar Biotechnol (NY) ; 23(3): 389-401, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33864541

ABSTRACT

The black carp (Mylopharyngodon piceus) is an important carnivorous freshwater-cultured species. To understand the molecular basis underlying the response of black carp to fasting, we used RNA-Seq to analyze the liver and brain transcriptome of fasting fish. Annotation to the NCBI database identified 66,609 unigenes, of which 22,841 were classified into the Gene Ontology database and 15,925 were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Comparative analysis of the expression profile between fasting and normal feeding fish revealed 13,737 differentially expressed genes (P < 0.05), of which 12,480 were found in liver tissue and 1257 were found in brain tissue. The KEGG pathway analysis showed significant differences in expression of genes involved in metabolic and immune pathways, such as the insulin signaling pathway, PI3K-Akt signaling pathway, cAMP signaling pathway, FoxO signaling pathway, AMPK signaling pathway, endocytosis, and apoptosis. Quantitative real-time PCR analysis confirmed that expression of the genes encoding the factors involved in those pathways differed between fasting and feeding fish. These results provide valuable information about the molecular response mechanism of black carp under fasting conditions.


Subject(s)
Brain/metabolism , Cyprinidae/metabolism , Food Deprivation/physiology , Liver/metabolism , Animals , Aquaculture , Cyprinidae/genetics , Gene Expression Profiling , RNA-Seq , Signal Transduction
3.
Article in English | MEDLINE | ID: mdl-33465759

ABSTRACT

The intestinal microbiome plays a pivotal role in the nutritional digestion and metabolism of the grass carp (Ctenopharyngodon idella). Here, we characterized the digesta and mucosal microbiome of the anterior, middle, and posterior intestine of the grass carp, using 16S rRNA next-generation sequencing. Based on 16S rRNA amplicon data, Proteobacteria, Firmicutes and Bacteroides were the dominant phyla in the intestine of grass carp. Our results also showed that microbial communities of the middle intestine exhibited higher alpha diversity indices compared with the anterior and posterior intestine. The clustering of microbial communities that had either colonized in the digesta or were attached to the mucosa, were significantly tighter in the posterior intestine, based on average unweighted Unifrac distances (P < 0.05). The digesta or mucosa of the anterior and middle intestines were similar in microbial composition, but were significantly different to the posterior intestine (P < 0.05). In digesta and mucosa samples from the posterior intestine, we observed a significantly increased abundance of cellulose-degrading microbiomes, such as Bacteroides, Clostridiales and Spirochaetia (P < 0.05). Our results suggested that the microbiomes of the posterior intestine, either attached to the mucosa or colonized in the digesta, were distinct from the microbiomes of the anterior and middle intestine in grass carp.


Subject(s)
Carps/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/isolation & purification , Bacteroides/isolation & purification , Firmicutes/isolation & purification , Intestinal Mucosa/microbiology , Intestines/microbiology , Proteobacteria/isolation & purification
4.
Fish Shellfish Immunol ; 104: 527-536, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32599058

ABSTRACT

Complement component 4 (C4) has critical immunological functions in vertebrates. In the current study, a C4 homolog (gcC4) was identified in grass carp (Ctenopharyngodon idella). The full-length 5458 bp gcC4 cDNA contained a 5148 bp open reading frame (ORF) encoding a protein of 1715 amino acids with a signal peptide and eight conservative domains. The gcC4 protein has a high level of identity with other fish C4 counterparts and is phylogenetically clustered with cyprinid fish C4. The gcC4 transcript shows wide tissue distribution and is inducible by Aeromonas hydrophila in vivo and in vitro. Furthermore, its expression also fluctuates upon lipopolysaccharide or flagellin stimulation in vitro. During infection, the gcC4 protein level decreases or increases to varying degrees, and the intrahepatic C4 expression location changes. With gcC4 overexpression, interleukin 1 beta, tumor necrosis factor alpha, and interferon transcripts are all upregulated by A. hydrophila infection. Meanwhile, overexpression of gcC4 reduces bacterial invasion or proliferation. Moreover, gcC4 may activate the NF-κB signaling pathway. These findings demonstrate the vital role of gcC4 in the innate immunity of grass carp.


Subject(s)
Carps/genetics , Carps/immunology , Complement C4/genetics , Complement C4/immunology , Fish Diseases/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Aeromonas hydrophila/physiology , Amino Acid Sequence , Animals , Complement C4/chemistry , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , NF-kappa B/physiology , Phylogeny , Sequence Alignment/veterinary , Signal Transduction/immunology
5.
Article in English | MEDLINE | ID: mdl-32540548

ABSTRACT

There appears to be a close correlation between intestinal microbiotas and obesity. Still, our understanding of the relationship between the intestinal microbiota and body-mass in grass carp (Ctenopharyngodon idella) remains limited. Herein, we explored this association in the anterior, middle, and posterior intestine of cohabitating grass carp by using next-generation sequencing of the 16S rRNA gene. The results showed that alpha diversity indices of the low-weight-gain (LWG) groups were higher than that of the high-weight-gain (HWG) groups. HWG groups possessed the decreased ratio of Bacteroidetes to Firmicutes compared with that in the LWG groups. Principal coordinate analysis (PCoA) and analysis of similarities (ANOSIM) revealed that there were significant differences between the HWG and LWG groups. Furthermore, linear discriminant analysis (LDA) coupled with effect size (LEfSe) showed that the order Clostridiales were significantly abundant in the HWG groups. Phylogenetic molecular ecology networks (pMENs) showed a lower average path distance (GD), higher average clustering coefficient (avgCC), and higher average degree (avgK) in the HWG group. Our results suggested that there appeared to be a tight correlation between the intestinal microbiota and body-mass in grass carp. The study provides a referable resource for establishing the relationship between intestinal microbiotas and economic traits, which also lays a foundation for the progress of new fish probiotic in the future.


Subject(s)
Carps/growth & development , Carps/microbiology , Gastrointestinal Microbiome , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Firmicutes/genetics , Firmicutes/isolation & purification , Intestines/growth & development , Intestines/microbiology , RNA, Ribosomal, 16S/genetics
6.
Fish Shellfish Immunol ; 70: 121-128, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28866274

ABSTRACT

Aeromonas hydrophila is the causative agent of bacterial septicemia that is frequently observed in grass carp, Ctenopharyngodon idellus. In this study, we evaluated the biological parameters and immune enzymes in the liver of grass carp following A. hydrophila infection and quantified the alterations in liver histology using a semi-quantitative system. For the biological parameters, we found that the liver somatic index (LSI) was more sensitive than Fulton's condition factor (CF) and was significantly decreased at three days post-injection (DPI). At the immune enzyme level, the level of peroxidase (POD) in the liver significantly increased at 1 and 3 DPI. The activity of alkaline phosphatase (ALP) significantly increased at 3 DPI. Similarly, acid phosphatase (ACP) activity significantly increased at 1, 3, and 5 DPI. Histologically, the results indicated that the liver index at 3, 5, and 7 DPI was significantly higher than that of control groups. The regressive alterations as the highly variable reactions patterns and its index at 5 DPI was significantly higher than that of 1, 21 DPI, and the control groups. Based on our results, we suggest that grass carp resist A. hydrophila infection via an innate immune mechanism in the liver. The findings of this study will help elucidate the underlying mechanisms of resistance to A. hydrophila infection.


Subject(s)
Carps , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Immunity, Innate , Liver/immunology , Aeromonas hydrophila/physiology , Animals , Fish Diseases/microbiology , Fish Proteins/genetics , Fish Proteins/metabolism , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Liver/anatomy & histology
7.
Fish Shellfish Immunol ; 66: 93-102, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28479400

ABSTRACT

The mannan-binding lectin-associated serine protease-1 (MASP-1) gene is a crucial component of the lectin pathway in the complement and coagulation cascade. Although MASP-1 has been found in the immune system of teleosts, its immune functions in response to bacterial infection are unclear. In this study, we identified a MASP-1 homolog (gcMASP-1) in the grass carp (Ctenopharyngodon idella). The full-length 3308-bp gcMASP-1 cDNA includes a 2160-bp open reading frame encoding a protein composed of 719 amino acids with epidermal growth factor-like, complement control protein, and trypsin-like domains. gcMASP-1 shares a high similarity with MASP-1 counterparts in other species, and it is most closely related to Cyprinus carpio MASP-1 and Sinocyclocheilus anshuiensis MASP-1. Transcription of gcMASP-1 was widely distributed in different tissues and induced by Aeromonas hydrophila in vivo and in vitro. Expression of gcMASP-1 was also affected by lipopolysaccharide and flagellin stimulation in vitro. In cells over-expressing gcMASP-1, transcript levels of almost all components, except gcMBL and gcC5, were significantly enhanced, and gcIL1ß, gcTNF-α, gcIFN, gcCD59, gcC5aR1, and gcITGß-2 were significantly upregulated after exposure to A. hydrophila; gcMASP-1 interference downregulated the transcript levels after A. hydrophila challenge. In addition, gcMASP-1 activated NF-κB signaling. These findings indicate the vital role of gcMASP-1 in innate immunity in C. idella.


Subject(s)
Aeromonas hydrophila/immunology , Carps , Fish Diseases/enzymology , Fish Proteins/metabolism , Gram-Negative Bacterial Infections/veterinary , Immunity, Innate/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Aeromonas hydrophila/physiology , Animals , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Fish Diseases/immunology , Fish Proteins/genetics , Gram-Negative Bacterial Infections/enzymology , Gram-Negative Bacterial Infections/immunology , Mannose-Binding Protein-Associated Serine Proteases/genetics , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Random Allocation , Sequence Analysis, DNA/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...