Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 12(3): e201800296, 2019 03.
Article in English | MEDLINE | ID: mdl-30302934

ABSTRACT

Acetaminophen (APAP) overdose is one of the world's leading causes of drug-induced hepatotoxicity. Although traditional methods such as histological imaging and biochemical assays have been successfully applied to evaluate the extent of APAP-induced liver damage, detailed effect of how APAP overdose affect the recovery of hepatobiliary metabolism and is not completely understood. In this work, we used intravital multiphoton microscopy to image and quantify hepatobiliary metabolism of the probe 6-carboxyfluorescein diacetate in APAP-overdose mice. We analyzed hepatobiliary metabolism for up to 7 days following the overdose and found that the excretion of the probe molecule was the most rapid on Day 1 following APAP overdose and slowed down on Days 2 and 3. On Day 7, probe excretion capability has exceeded that of the normal mice, suggesting that newly regenerated hepatocytes have higher metabolic capabilities. Our approach may be further developed applied to studying drug-induced hepatotoxicity in vivo.


Subject(s)
Acetaminophen/adverse effects , Biliary Tract/drug effects , Biliary Tract/metabolism , Drug Overdose/metabolism , Liver/drug effects , Liver/metabolism , Animals , Biliary Tract/diagnostic imaging , Dose-Response Relationship, Drug , Drug Overdose/diagnostic imaging , Liver/diagnostic imaging , Male , Mice , Mice, Inbred C57BL , Molecular Imaging
2.
Biophys J ; 97(4): 1198-205, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19686668

ABSTRACT

The purpose of this study was to image and quantify the structural changes of corneal edema by second harmonic generation (SHG) microscopy. Bovine cornea was used as an experimental model to characterize structural alterations in edematous corneas. Forward SHG and backward SHG signals were simultaneously collected from normal and edematous bovine corneas to reveal the morphological differences between them. In edematous cornea, both an uneven expansion in the lamellar interspacing and an increased lamellar thickness in the posterior stroma (depth > 200 microm) were identified, whereas the anterior stroma, composed of interwoven collagen architecture, remained unaffected. Our findings of heterogeneous structural alteration at the microscopic scale in edematous corneas suggest that the strength of collagen cross-linking is heterogeneous in the corneal stroma. In addition, we found that qualitative backward SHG collagen fiber imaging and depth-dependent signal decay can be used to detect and diagnose corneal edema. Our work demonstrates that SHG imaging can provide morphological information for the investigation of corneal edema biophysics, and may be applied in the evaluation of advancing corneal edema in vivo.


Subject(s)
Cornea/ultrastructure , Corneal Edema/pathology , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence, Multiphoton/methods , Animals , Cattle , In Vitro Techniques
3.
BMC Res Notes ; 2: 75, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19416550

ABSTRACT

BACKGROUND: Previous studies showed that gene hybrid is one of the principal processes for generating new genes. Although some gene hybrid events have been reported to be inter- or intra-species, there lacks a well-organized method for large scale detection of the events with multiple components. Hence in this study, we focus on building up an efficient method for exploring all candidates of gene hybrid events in human genome and provide useful results for further study. FINDINGS: We have developed a method designated Triad Comparison Algorithm (TCA) to detect all potential N-hybrid events (i.e., an N-hybrid gene and its N non-overlapping component regions derived from N different genes) in human genome. The results reveal that there are many convoluted N-hybrid events with multiple components (N > 2) and that the most complicated N-hybrid genes detected in human by TCA are composed of six component regions. Interestingly, our results show that most of the hybrid events belong to the 3-hybrid category. Furthermore, we observe that a single gene might participate in different events. Twelve genes were found to have dual identities contained in different N-hybrid events (i.e., they were identified as hybrid genes as well as component genes). This points out that to a certain extent the gene hybrid mechanism has generated new genes during the course of human genome evolutionary history. CONCLUSION: An efficient method, TCA, is developed for exploring all candidates of hybrid genes in the human genome and provides useful results for the evolutionary analysis. The advantage of TCA is its power of detecting any kinds of hybrid events in any species with a large genome size.

4.
Mol Biol Evol ; 24(7): 1443-6, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17434901

ABSTRACT

Alternative splicing (AS) has been recognized as a mechanism of relaxing selection pressure on protein subsequences. Here, we show that AS may also yield contrary evolutionary effects. We compare the evolutionary rates of 2 types of alternatively spliced exons (ASEs)-simple and complex. The former does not change the boundaries of its flanking exons, whereas the latter does. By analyzing over 26,000 human-mouse orthologous exons, we demonstrate that complex ASEs have lower Ka and Ka/Ks ratio and higher Ks than constitutively spliced exons (CSEs), whereas simple ASEs have evolutionary rates to the opposite of CSEs. Our results indicate that complex ASEs are subject to stronger selection pressure than CSEs at the protein level, but the trend is reversed at the RNA level. Therefore, the previous view that ASEs accelerate evolution of protein subsequences needs to be modified.


Subject(s)
Alternative Splicing/genetics , Evolution, Molecular , Animals , Exons , Humans , Mice , Selection, Genetic
5.
Plant Physiol ; 143(3): 1086-95, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17220363

ABSTRACT

The completion of the rice (Oryza sativa) genome draft has brought unprecedented opportunities for genomic studies of the world's most important food crop. Previous rice gene annotations have relied mainly on ab initio methods, which usually yield a high rate of false-positive predictions and give only limited information regarding alternative splicing in rice genes. Comparative approaches based on expressed sequence tags (ESTs) can compensate for the drawbacks of ab initio methods because they can simultaneously identify experimental data-supported genes and alternatively spliced transcripts. Furthermore, cross-species EST information can be used to not only offset the insufficiency of same-species ESTs but also derive evolutionary implications. In this study, we used ESTs from seven plant species, rice, wheat (Triticum aestivum), maize (Zea mays), barley (Hordeum vulgare), sorghum (Sorghum bicolor), soybean (Glycine max), and Arabidopsis (Arabidopsis thaliana), to annotate the rice genome. We developed a plant genome annotation pipeline, Plant Gene and Alternatively Spliced Variant Annotator (PGAA). Using this approach, we identified 852 genes (931 isoforms) not annotated in other widely used databases (i.e. the Institute for Genomic Research, National Center for Biotechnology Information, and Rice Annotation Project) and found 87% of them supported by both rice and nonrice EST evidence. PGAA also identified more than 44,000 alternatively spliced events, of which approximately 20% are not observed in the other three annotations. These novel annotations represent rich opportunities for rice genome research, because the functions of most of our annotated genes are currently unknown. Also, in the PGAA annotation, the isoforms with non-rice-EST-supported exons are significantly enriched in transporter activity but significantly underrepresented in transcription regulator activity. We have also identified potential lineage-specific and conserved isoforms, which are important markers in evolutionary studies. The data and the Web-based interface, RiceViewer, are available for public access at http://RiceViewer.genomics.sinica.edu.tw/.


Subject(s)
Expressed Sequence Tags , Genome, Plant , Oryza/genetics , Protein Isoforms/genetics , Software , Base Sequence , Conserved Sequence , Databases, Genetic , Evolution, Molecular , Internet , Molecular Sequence Data , Plants/genetics
6.
Mol Biol Evol ; 23(3): 675-82, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16368777

ABSTRACT

There has been a controversy on whether alternatively spliced exons (ASEs) evolve faster than constitutively spliced exons (CSEs). Although it has been noted that ASEs are subject to weaker selective constraints than CSEs, so they evolve faster, there have also been studies that indicated slower evolution in ASEs than in CSEs. In this study, we retrieve more than 5,000 human-mouse orthologous exons and calculate the synonymous (KS) and nonsynonymous (KA) substitution rates in these exons. Our results show that ASEs have higher KA values and higher KA/KS ratios than CSEs, indicating faster amino acid-level evolution in ASEs. The faster evolution may be in part due to weaker selective constraints. It is also possible that the faster rate is in part due to faster functional evolution in ASEs. On the other hand, the majority of ASEs have lower KS values than CSEs. With reference to the substitution rate in introns, we show that the KS values in ASEs are close to the neutral substitution rate, whereas the synonymous substitution rate in CSEs has likely been accelerated. The elevated synonymous rate in CSEs is not related to CpG dinucleotides or low-complexity regions of protein but may be weakly related to codon usage bias. The overall trends of higher KA and lower KS in ASEs than in CSEs are also observed in human-rat and mouse-rat comparisons. Therefore, our observations hold for mammals of different molecular clocks.


Subject(s)
Evolution, Molecular , Exons , RNA Splicing , Animals , Databases, Nucleic Acid , Humans , Introns , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...