Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Oncogene ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802647

ABSTRACT

Approximately 40% of patients with lung adenocarcinoma (LUAD) often develop bone metastases during the course of their disease. However, scarcely any in vivo model of LUAD bone metastasis has been established, leading to a poor understanding of the mechanisms underlying LUAD bone metastasis. Here, we established a multiorgan metastasis model via the left ventricular injection of luciferase-labeled LUAD cells into nude mice and then screened out lung metastasis (LuM) and bone metastasis (BoM) cell subpopulations. BoM cells exhibited greater stemness and epithelial-mesenchymal transition (EMT) plasticity than LuM cells and initially colonized the bone and subsequently disseminated to distant organs after being reinjected into mice. Moreover, a CD74-ROS1 fusion mutation (C6; R34) was detected in BoM cells but not in LuM cells. Mechanistically, BoM cells bearing the CD74-ROS1 fusion highly secrete the C-C motif chemokine ligand 5 (CCL5) protein by activating STAT3 signaling, recruiting macrophages in tumor microenvironment and strongly inducing M2 polarization of macrophages. BoM cell-activated macrophages produce a high level of TGF-ß1, thereby facilitating EMT and invasion of LUAD cells via TGF-ß/SMAD2/3 signaling. Targeting the CD74-ROS1/CCL5 axis with Crizotinib (a ROS1 inhibitor) and Maraviroc (a CCL5 receptor inhibitor) in vivo strongly impeded bone metastasis and secondary metastasis of BoM cells. Our findings reveal the critical role of the CD74-ROS1/STAT3/CCL5 axis in the interaction between LUAD bone metastasis cells and macrophages for controlling LUAD cell dissemination, highlighting the significance of the bone microenvironment in LUAD bone metastasis and multiorgan secondary metastasis, and suggesting that targeting CD74-ROS1 and CCL5 is a promising therapeutic strategy for LUAD bone metastasis.

2.
Materials (Basel) ; 17(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793401

ABSTRACT

Brain-computer interface (BCI) technology is currently a cutting-edge exploratory problem in the field of human-computer interaction. However, in experiments involving the implantation of electrodes into brain tissue, particularly high-speed or array implants, existing technologies find it challenging to observe the damage in real time. Considering the difficulties in obtaining biological brain tissue and the challenges associated with real-time observation of damage during the implantation process, we have prepared a transparent agarose gel that closely mimics the mechanical properties of biological brain tissue for use in electrode implantation experiments. Subsequently, we developed an experimental setup for synchronized observation of the electrode implantation process, utilizing the Digital Gradient Sensing (DGS) method. In the single electrode implantation experiments, with the increase in implantation speed, the implantation load increases progressively, and the tissue damage region around the electrode tip gradually diminishes. In the array electrode implantation experiments, compared to a single electrode, the degree of tissue indentation is more severe due to the coupling effect between adjacent electrodes. As the array spacing increases, the coupling effect gradually diminishes. The experimental results indicate that appropriately increasing the velocity and array spacing of the electrodes can enhance the likelihood of successful implantation. The research findings of this article provide valuable guidance for the damage assessment and selection of implantation parameters during the process of electrode implantation into real brain tissue.

3.
Sci China Life Sci ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761356

ABSTRACT

Cardiac conduction regulatory RNA (CCRR) has been documented as an antiarrhythmic lncRNA in our earlier investigation. This study aimed to evaluate the effects of CCRR on SERCA2a and the associated Ca2+ homeostasis in myocardial infarction (MI). Overexpression of CCRR via AAV9-mediated delivery not only partially reversed ischemia-induced contractile dysfunction but also alleviated abnormal Ca2+ homeostasis and reduced the heightened methylation level of SERCA2a following MI. These effects were also observed in CCRR over-expressing transgenic mice. A conserved sequence domain of CCRR mimicked the protective function observed with the full length. Furthermore, silencing CCRR in healthy mice led to intracellular Ca2+ overloading of cardiomyocytes. CCRR increased SERCA2a protein stability by upregulating FTO expression. The direct interaction between CCRR and FTO protein was characterized by RNA-binding protein immunoprecipitation (RIP) analysis and RNA pulldown experiments. Activation of NFATc3 was identified as an upstream mechanism responsible for CCRR downregulation in MI. This study demonstrates that CCRR is a protective lncRNA that acts by maintaining the function of FTO, thereby reducing the m6A RNA methylation level of SERCA2a, ultimately preserving calcium homeostasis for myocardial contractile function in MI. Therefore, CCRR may be considered a promising therapeutic strategy with a beneficial role in cardiac pathology.

4.
Oncogene ; 43(24): 1813-1823, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38654109

ABSTRACT

Mammalian target of rapamycin (mTOR) kinase functions as a central regulator of cell growth and metabolism, and its complexes mTORC1 and mTORC2 phosphorylate distinct substrates. Dysregulation of mTOR signaling is commonly implicated in human diseases, including cancer. Despite three decades of active research in mTOR, much remains to be determined. Here, we demonstrate that prolyl 4-hydroxylase alpha-2 (P4HA2) binds directly to mTOR and hydroxylates one highly conserved proline 2341 (P2341) within a kinase domain of mTOR, thereby activating mTOR kinase and downstream effector proteins (e.g. S6K and AKT). Moreover, the hydroxylation of P2341 strengthens mTOR stability and allows mTOR to accurately recognize its substrates such as S6K and AKT. The growth of lung adenocarcinoma cells overexpressing mTORP2341A is significantly reduced when compared with that of cells overexpressing mTORWT. Interestingly, in vivo cell growth assays show that targeting P4HA2-mTOR significantly suppresses lung adenocarcinoma cell growth. In summary, our study reveals an undiscovered hydroxylation-regulatory mechanism by which P4HA2 directly activates mTOR kinase, providing insights for therapeutically targeting mTOR kinase-driven cancers.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , Lung Neoplasms , TOR Serine-Threonine Kinases , Humans , Hydroxylation , TOR Serine-Threonine Kinases/metabolism , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Animals , Mice , Cell Line, Tumor , Signal Transduction , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics
5.
Front Plant Sci ; 15: 1357472, 2024.
Article in English | MEDLINE | ID: mdl-38650699

ABSTRACT

Quantitative assessment of tree responses to the local environment can help provide scientific guidance for planted forest management. However, research on the climate-growth relationship of Korshinsk peashrub (Caragana korshinskii Kom.) under different land preparation and post-management (irrigation) conditions is still insufficient. In this study, we collected 223 tree-ring samples from Korshinsk peashrubs using dendroecological methods and systematically quantified the relationships between shrub growth and climatic factors under different management practices in the western Loess Plateau of China. Our findings demonstrated that drought stress caused by scarce precipitation from April to August was the primary factor limiting the growth of Korshinsk peashrubs in the northern and southern mountains of Lanzhou. The "climwin" climate model results showed a weak correlation between natural Korshinsk peashrub growth and drought stress, whereas planted Korshinsk peashrub under rain-fed conditions in the southern mountain was significantly (p<0.05) limited by drought stress from April to August. Moreover, planted Korshinsk peashrub growth under irrigated conditions in the northern mountain was limited only by drought stress in January. Drought model explained 28.9%, 38.3%, and 9.80% of the radial growth variation in Xiguoyuan (XGY), Shuibaozhan (SBZ), and Zhichagou (ZCG) sites, respectively. Artificial supplementary irrigation alleviated the limitation of drought on planted forest growth, which may be implemented for Korshinsk peashrubs planted on sunny slopes, while planted Korshinsk peashrubs under natural rain-fed conditions can be planted on shady slopes through rainwater harvesting and conservation measures such as horizontal ditches and planting holes.

6.
Aging (Albany NY) ; 16(8): 7188-7216, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38643462

ABSTRACT

BACKGROUND: This study aims to identify the essential cell cycle-related genes associated with prognosis in breast cancer (BRCA), and to verify the relationship between the central gene and immune infiltration, so as to provide detailed and comprehensive information for the treatment of BRCA. MATERIALS AND METHODS: Gene expression profiles (GSE10780, GSE21422, GSE61304) and the Cancer Genome Atlas (TCGA) BRCA data were used to identify differentially expressed genes (DEGs) and further functional enrichment analysis. STRING and Cytoscape were employed for the protein-protein interaction (PPI) network construction. TPX2 was viewed as the crucial prognostic gene by the Survival and Cox analysis. Furthermore, the connection between TPX2 expression and immune infiltrating cells and immune checkpoints in BRCA was also performed by the TIMER online database and R software. RESULTS: A total of 18 cell cycle-related DEGs were identified in this study. Subsequently, an intersection analysis based on TCGA-BRCA prognostic genes and the above DEGs identified three genes (TPX2, UBE2C, CCNE2) as crucial prognostic candidate biomarkers. Moreover, we also demonstrated that TPX2 is closely associated with immune infiltration in BRCA and a positive relation between TPX2 and PD-L1 expression was firstly detected. CONCLUSIONS: These results revealed that TPX2 is a potential prognostic biomarker and closely correlated with immune infiltration in BRCA, which could provide powerful and efficient strategies for breast cancer immunotherapy.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cell Cycle Proteins , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins , Humans , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Female , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Biomarkers, Tumor/genetics , Prognosis , Microtubule-Associated Proteins/genetics , Protein Interaction Maps/genetics , Gene Expression Profiling , Cell Cycle/genetics , Databases, Genetic
7.
Front Public Health ; 12: 1320295, 2024.
Article in English | MEDLINE | ID: mdl-38686031

ABSTRACT

Objective: Hypertension is the most challenging public health problem worldwide and seriously affects human health. To date, there are no epidemiological studies on the prevalence of and risk factors for hypertension among older people in mainland China. Methods: We conducted a meta-analysis of the prevalence and risk factors of hypertension among the older population in mainland China. We searched Chinese and English databases for Chinese and English literature on hypertension epidemiology published between 2000 and 2022, and hypertension data among the older population were extracted from the included literature. A meta-analysis was performed using a random-effects model (I2 > 50%) with 95% confidence intervals for the forest plots. Data were processed using RevMan 5.3. Forty-nine publications (with data from 84,429 samples) met the evaluation criteria and were included in this study. Results: We found that the total prevalence of hypertension was 47%. The total prevalence rate of the older population in China from 2000 to 2010 was 50%, and the prevalence rate from 2011 to 2021 was 45%, with no significant differences. The total prevalence in Central China was the highest (59%). There was no significant correlation between the prevalence rate of the older population, sex, and urban or rural areas. Conclusion: Hypertension is common among the older population in China, and its control rate is low. Therefore, effective prevention and treatment measures, as well as education, should be formulated to improve the diagnosis and treatment of hypertension in the older population.


Subject(s)
Hypertension , Humans , Hypertension/epidemiology , China/epidemiology , Prevalence , Risk Factors , Aged , Male , Female , Aged, 80 and over , Middle Aged , East Asian People
8.
Front Endocrinol (Lausanne) ; 15: 1338781, 2024.
Article in English | MEDLINE | ID: mdl-38464967

ABSTRACT

Background: Pituitary stalk interruption syndrome (PSIS) is a complex clinical syndrome characterized by varied pituitary hormone deficiencies, leading to severe manifestations across multiple systems. These include lifelong infertility, short stature, mental retardation, and potentially life-threatening pituitary crises if not promptly diagnosed and treated. Despite extensive research, the precise pathogenesis of PSIS remains unclear. Currently, there are two proposed theories regarding the pathogenic mechanisms: the genetic defect theory and the perinatal injury theory. Methods: We systematically searched English databases (PubMed, Web of Science, Embase) and Chinese databases (CNKI, WanFang Med Online, Sinomed) up to February 24, 2023, to summarize studies on gene sequencing in PSIS patients. Enrichment analyses of reported mutated genes were subsequently performed using the Metascape platform. Results: Our study included 37 articles. KEGG enrichment analysis revealed mutated genes were enriched in the Notch signaling pathway, Wnt signaling pathway, and Hedgehog signaling pathway. GO enrichment analysis demonstrated mutated genes were enriched in biological processes such as embryonic development, brain development, axon development and guidance, and development of other organs. Conclusion: Based on our summary and analyses, we propose a new hypothesis: disruptions in normal embryonic development, partially stemming from the genetic background and/or specific gene mutations in individuals, may increase the likelihood of abnormal fetal deliveries, where different degrees of traction during delivery may lead to different levels of pituitary stalk interruption and posterior lobe ectopia. The clinical diversity observed in PSIS patients may result from a combination of genetic background, specific mutations, and variable degrees of traction during delivery.


Subject(s)
Hypopituitarism , Pituitary Diseases , Humans , Hedgehog Proteins , Pituitary Diseases/pathology , Pituitary Gland/pathology , Hypopituitarism/genetics , Hypopituitarism/pathology , Mutation , Syndrome
9.
Sci Rep ; 14(1): 622, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182713

ABSTRACT

Lysosomes are essential components for managing tumor microenvironment and regulating tumor growth. Moreover, recent studies have also demonstrated that long non-coding RNAs could be used as a clinical biomarker for diagnosis and treatment of colorectal cancer. However, the influence of lysosome-related lncRNA (LRLs) on the progression of colon cancer is still unclear. This study aimed to identify a prognostic LRL signature in colon cancer and elucidated potential biological function. Herein, 10 differential expressed lysosome-related genes were obtained by the TCGA database and ultimately 4 prognostic LRLs for conducting a risk model were identified by the co-expression, univariate cox, least absolute shrinkage and selection operator analyses. Kaplan-Meier analysis, principal-component analysis, functional enrichment annotation, and nomogram were used to verify the risk model. Besides, the association between the prognostic model and immune infiltration, chemotherapeutic drugs sensitivity were also discussed in this study. This risk model based on the LRLs may be promising for potential clinical prognosis and immunotherapeutic responses related indicator in colon cancer patients.


Subject(s)
Colonic Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Prognosis , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Nomograms , Lysosomes/genetics , Tumor Microenvironment/genetics
10.
Biomolecules ; 14(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38254660

ABSTRACT

Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have been identified as crucial regulators of various biological processes through epigenetic regulation, transcriptional regulation, and post-transcriptional regulation. Growing evidence suggests that dysregulation and activation of non-coding RNAs are closely associated with tumor angiogenesis, a process essential for tumor growth and metastasis and a major contributor to cancer-related mortality. Therefore, understanding the molecular mechanisms underlying tumor angiogenesis is of utmost importance. Numerous studies have documented the involvement of different types of non-coding RNAs in the regulation of angiogenesis. This review provides an overview of how non-coding RNAs regulate tumor angiogenesis. Additionally, we discuss emerging strategies that exploit non-coding RNAs for anti-angiogenic therapy in cancer treatment. Ultimately, this review underscores the crucial role played by non-coding RNAs in tumor angiogenesis and highlights their potential as therapeutic targets for anti-angiogenic interventions against cancer.


Subject(s)
Angiogenesis , Neoplasms , Humans , Epigenesis, Genetic , Neoplasms/genetics , Cardiovascular Physiological Phenomena , Immunotherapy
11.
Molecules ; 29(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257379

ABSTRACT

Metal-organic frameworks (MOFs) are a novel category of porous crystalline materials with an exceptionally high surface area and adjustable pore structure. They possess a designable composition and can be easily functionalized with different units. Porphyrins with conjugated tetrapyrrole macrocyclic structures can absorb light from ultraviolet to visible light regions, and their structures and properties can be facilely regulated by altering their peripheral groups or central metal ions. Porphyrin-based MOFs constructed from porphyrin ligands and metal nodes combine the unique features of porphyrins and MOFs as well as overcoming their respective limitations. This paper reviewed the design and construction, light absorption and charge transfer pathways, and strategy for improving the photocatalytic performance of porphyrin-based MOFs, and highlighted the recent progress in the field of CO2 reduction, hydrogen evolution, organic synthesis, organic pollutant removal, and nitrogen fixation. The intrinsic relationships between the structure and the property of porphyrin-based MOFs received special attention, especially the relationships between the arrangements of porphyrin ligands and metal nods and the charge transfer mechanism. We attempted to provide more valuable information for the design and construction of advanced photocatalysts in the future. Finally, the challenges and future perspectives of the porphyrin-based MOFs are also discussed.

12.
Spine J ; 24(1): 146-160, 2024 01.
Article in English | MEDLINE | ID: mdl-37704048

ABSTRACT

BACKGROUND CONTEXT: Intraoperative blood loss is a significant concern in patients with metastatic spinal disease. Early identification of patients at high risk of experiencing massive intraoperative blood loss is crucial as it allows for the development of appropriate surgical plans and facilitates timely interventions. However, accurate prediction of intraoperative blood loss remains limited based on prior studies. PURPOSE: The purpose of this study was to develop and validate a web-based artificial intelligence (AI) model to predict massive intraoperative blood loss during surgery for metastatic spinal disease. STUDY DESIGN/SETTING: An observational cohort study. PATIENT SAMPLE: Two hundred seventy-six patients with metastatic spinal tumors undergoing decompressive surgery from two hospitals were included for analysis. Of these, 200 patients were assigned to the derivation cohort for model development and internal validation, while the remaining 76 were allocated to the external validation cohort. OUTCOME MEASURES: The primary outcome was massive intraoperative blood loss defined as an estimated blood loss of 2,500 cc or more. METHODS: Data on patients' demographics, tumor conditions, oncological therapies, surgical strategies, and laboratory examinations were collected in the derivation cohort. SMOTETomek resampling (which is a combination of Synthetic Minority Oversampling Technique and Tomek Links Undersampling) was performed to balance the classes of the dataset and obtain an expanded dataset. The patients were randomly divided into two groups in a proportion of 7:3, with the most used for model development and the remaining for internal validation. External validation was performed in another cohort of 76 patients with metastatic spinal tumors undergoing decompressive surgery from a teaching hospital. The logistic regression (LR) model, and five machine learning models, including K-Nearest Neighbor (KNN), Decision Tree (DT), XGBoosting Machine (XGBM), Random Forest (RF), and Support Vector Machine (SVM), were used to develop prediction models. Model prediction performance was evaluated using area under the curve (AUC), recall, specificity, F1 score, Brier score, and log loss. A scoring system incorporating 10 evaluation metrics was developed to comprehensively evaluate the prediction performance. RESULTS: The incidence of massive intraoperative blood loss was 23.50% (47/200). The model features were comprised of five clinical variables, including tumor type, smoking status, Eastern Cooperative Oncology Group (ECOG) score, surgical process, and preoperative platelet level. The XGBM model performed the best in AUC (0.857 [95% CI: 0.827, 0.877]), accuracy (0.771), recall (0.854), F1 score (0.787), Brier score (0.150), and log loss (0.461), and the RF model ranked second in AUC (0.826 [95% CI: 0.793, 0.861]) and precise (0.705), whereas the AUC of the LR model was only 0.710 (95% CI: 0.665, 0.771), the accuracy was 0.627, the recall was 0.610, and the F1 score was 0.617. According to the scoring system, the XGBM model obtained the highest total score of 55, which signifies the best predictive performance among the evaluated models. External validation showed that the AUC of the XGBM model was also up to 0.809 (95% CI: 0.778, 0.860) and the accuracy was 0.733. The XGBM model, was further deployed online, and can be freely accessed at https://starxueshu-massivebloodloss-main-iudy71.streamlit.app/. CONCLUSIONS: The XGBM model may be a useful AI tool to assess the risk of intraoperative blood loss in patients with metastatic spinal disease undergoing decompressive surgery.


Subject(s)
Spinal Cord Neoplasms , Spinal Neoplasms , Humans , Blood Loss, Surgical , Artificial Intelligence , Spinal Neoplasms/surgery , Machine Learning , Hospitals, Teaching , Internet
13.
Can J Cardiol ; 40(4): 710-725, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38081511

ABSTRACT

BACKGROUND: Timely and proper suppression of inflammation can effectively reduce myocardial injury and promote the postmyocardial infarction (post-MI) wound-healing process. We have previously found that cardiac conduction regulatory RNA (CCRR), a long noncoding RNA (lncRNA) transcribed by the gene located on chromosome 9, with abundant expression in the heart, elicits antiarrhythmic effects in heart failure, and this is a continuing study on the role of CCRR in MI. METHODS: CCRR was overexpressed in CCRR transgenic mice or after injection of adeno-associated virus-9 (AAV-9). MI surgery was performed, and cardiac function was assessed in vivo by echocardiography, followed by histologic analyses. Western blot analysis and qRT-PCR were performed to investigate the effects of CCRR on macrophages, cardiomyocytes, and cardiomyocytes cocultured with macrophages. Through microarray analysis and RNA-binding protein immunoprecipitation (RIP) and other related techniques were also employed to study the effects of CCRR on Toll-like receptor (TLR)2 and TLR4. RESULTS: We found that CCRR level was significantly decreased with increases in proinflammatory cytokines and activation of the TLR signalling pathway in the heart of the 3-day MI mice. CCRR overexpression downregulated TLR2 and TLR4 in MI and effectively inhibited the inflammatory responses in primary cardiomyocytes and macrophages cultured under hypoxic conditions. Downregulation of CCRR induced excessive inflammatory responses by activating the TLR signalling pathway. CCRR acted by suppressing TLR2 and TLR4 to inhibit the secretion of proinflammatory factors to reduce infarct size, thereby improving cardiac function. CONCLUSIONS: CCRR protected cardiomyocytes against MI injury by suppressing inflammatory response through targeting the TLR signalling pathway.


Subject(s)
Myocardial Infarction , RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction , Myocytes, Cardiac/metabolism
14.
Plant Biotechnol J ; 22(1): 181-199, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37776153

ABSTRACT

Aluminium (Al) toxicity decreases crop production in acid soils in general, but many crops have evolved complex mechanisms to resist it. However, our current understanding of how plants cope with Al stress and perform Al resistance is still at the initial stage. In this study, the citrate transporter CcMATE35 was identified to be involved in Al stress response. The release of citrate was increased substantially in CcMATE35 over-expression (OE) lines under Al stress, indicating enhanced Al resistance. It was demonstrated that transcription factor CcNFYB3 regulated the expression of CcMATE35, promoting the release of citrate from roots to increase Al resistance in pigeon pea. We also found that a Long noncoding RNA Targeting Citrate Synthase (CcLTCS) is involved in Al resistance in pigeon pea. Compared with controls, overexpression of CcLTCS elevated the expression level of the Citrate Synthase gene (CcCS), leading to increases in root citrate level and citrate release, which forms another module to regulate Al resistance in pigeon pea. Simultaneous overexpression of CcNFYB3 and CcLTCS further increased Al resistance. Taken together, these findings suggest that the two modules, CcNFYB3-CcMATE35 and CcLTCS-CcCS, jointly regulate the efflux and synthesis of citrate and may play an important role in enhancing the resistance of pigeon pea under Al stress.


Subject(s)
Cajanus , RNA, Long Noncoding , Citric Acid/metabolism , Cajanus/genetics , Aluminum/toxicity , Aluminum/metabolism , Citrate (si)-Synthase , Citrates/metabolism
15.
BMC Surg ; 23(1): 373, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071372

ABSTRACT

INTRODUCTION: Schatzker IV tibial plateau fractures usually have a worse prognosis due to their high variability and the accompanied bony and soft tissue injuries. This study aimed to introduce an injury mechanism-based new classification of Schatzker IV tibial plateau fractures and evaluate its reliability. Additionally, this study aimed to evaluate the outcomes of operative Schatzker IV tibial plateau fractures treated according to the surgical sequences determined by the new classification. MATERIALS AND METHODS: A total of 63 cases of operative Schatzker IV tibial plateau fractures that were treated following the new surgical sequences were enrolled in our study. The CT images of these patients were reviewed and classified twice according to the new 3D classification by 4 independent observers. The reliability of the classification was calculated through kappa analysis. The classification-determined surgical sequence was evaluated by observing the postoperative efficacy during the follow-up. RESULTS: Both the intra-observer (the mean k = 0.897, CI 0.806-0.971) and inter-observer (the mean k = 0.883, CI 0.786-0.961) reliability of 3D-classification showed excellent agreement according to Landis and Koch. All the patients were followed up for 6-28 months (average 12.8 months). As for the evaluation of the postoperative efficacy, according to KSS, 53 cases were rated as excellent, 8 cases as good, and 2 cases as fair results. CONCLUSIONS: The new proposed classification showed high intra-observer and inter-observer reliability in our study. The surgical sequence determined by the classification can help surgeons to acquire good reduction and rigid internal fixation. Therefore the new classification of Schatzker IV tibial plateau fractures and the derived surgical sequences are worthy of further popularization and application in clinical trials.


Subject(s)
Tibial Fractures , Tibial Plateau Fractures , Humans , Tomography, X-Ray Computed/methods , Reproducibility of Results , Tibial Fractures/diagnostic imaging , Tibial Fractures/surgery , Fracture Fixation, Internal , Retrospective Studies
16.
J Egypt Natl Canc Inst ; 35(1): 32, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37779128

ABSTRACT

Gastric cancer (GC) is the one of the most commonly solid cancer worldwide. Although under the aggressive treatment, the poor clinical outcomes of patients with GCs have not been improved. Current studies emphasized that targeting therapies or immune response-based therapeutic strategy may be a potential approach to improve the clinical outcomes. Moreover, accumulative evidence has reported the increasing expression of PD-L1 expression in GC cells and highlighted its role in the tumor progression. Currently, great development has been established in the immune checkpoint inhibitors (ICIs) and further changed the clinical practice of GC treatment and prognosis. In addition, the combination therapies with targeting therapy or traditional therapies are expected to push the development of immunotherapies. In our present review, we predominantly focus on the biomarkers and molecular profiles for immunotherapies in GCs and highlight the role and administration of ICIs-based immunotherapeutic strategies against the GCs.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Immunotherapy , Prognosis , Biomarkers
17.
ACS Appl Mater Interfaces ; 15(41): 48601-48612, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37787638

ABSTRACT

Chameleons are famous for their quick color changing abilities, and it is commonly assumed that they do this for camouflage. However, recent reports revealed that chameleons also change color for body temperature regulation. Inspired by the structure of the panther chameleon's skin, a stripe-patterned poly(N-isopropylacrylamide) (PNIPAM) and polyacrylamide (PAM) hydrogel film with a laminated structure is fabricated in this work; thus, both camouflage and thermoregulation can be achieved through controlling Vis and NIR light effectively. For the PNIPAM stripe, the upper layer is the native PNIPAM hydrogel and the lower layer is the carbon nanotube-composited PNIPAM hydrogel. Thus, the PNIPAM stripe is capable of reaching 28 °C at a low environmental temperature (12 °C) and a low radiation intensity (20 mW cm-2), while preventing the body temperature from rising by changing to white under a strong radiation intensity (100 mW cm-2). For the PAM stripe, the upper layer combines colloidal photonic crystals and displays a tunable structural color by stretching, and the lower layer is mixed with PNIPAM microgels for thermal regulation. Through the fabrication of multifunctional patterns, the film can achieve both dynamic structural color and thermoregulation by precisely controlling solar radiation absorption, scattering, and reflection. More importantly, in the stripe-patterned system, the shrinkage of the PNIPAM stripes can effectively trigger the elongation of the PAM stripe, which endows the structural color changing process to be self-powered completely. The performances show that the stripe-patterned film may have potential applications in intelligent coatings, especially in areas with large temperature differences during the day such as high plains.


Subject(s)
Skin, Artificial , Hydrogels , Light , Temperature , Body Temperature Regulation
18.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836595

ABSTRACT

In nature, some creatures can change their body shapes and surface colors simultaneously to respond to the external environments, which greatly inspired researchers in the development of color-tunable soft actuators. In this work, we present a facile method to prepare a smart hydrogel actuator that can bend bidirectionally and change color simultaneously, just like an octopus. The actuator is fabricated by elastomer/hydrogel bilayer and the hydrogel layer was decorated with thermoresponsive microgels as the photonic crystal blocks. Compared with the previously reported poly(N-isopropylacrylamide) hydrogel-based bilayer hydrogel actuators, which are generally limited to one-directional deformation, the elastomer/hydrogel bilayer actuator prepared in our work exhibits unique bidirectional bending behavior in accordance with the change of structural color. The bending degrees can be changed from -360° to 270° in response to solution temperatures ranging from 20 °C to 60 °C. At the same time, the surface color changes from red to green, and then to blue, covering the full visible light spectrum. The bending direction and degree of the hydrogel actuator can easily be adjusted by tuning the layer thickness ratio of the elastomer/hydrogel or the composition of the hydrogel. The color-tunable hydrogel-elastomer actuator reported in this work can achieve both programmable deformations and color-changing highly resembling the natural actuating behaviors of creatures.

19.
Bioresour Technol ; 388: 129758, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717701

ABSTRACT

Effectively pairing diverse lignocellulolytic enzyme cocktails with intricately structured lignocellulosic substrates is an enduring challenge for science and technology. To date, extensive trial-and-error remains the primary approach and no deep-learning methods were developed to address it due to limited experimental data and incomplete expert-level knowledge of enzyme-cocktail-substrate structure-dynamics-function relationships. Here, a novel model is developed to tackle this issue in efficient, cost-effective, and high-throughput manners. It needs no pre-labeled datasets, instead utilizing simple features, eliminating the reliance on expert-level prior knowledge of reaction mechanisms. Experimentally optimal combinations were found within predicted ranges of tailor-made combinations with precision of 91.98%, covering 80.00% of overall top-100. Practical tests demonstrated its effectiveness in narrowing down potential optimal combinations, speeding up targeted screening, and enabling efficient degradation of lignocellulosic biomass. The method has good applications in artificial proteins biosynthesis from low-value lignocellulosic straw, providing alternative solutions for biomass biorefining challenges in complex enzyme-cocktail-substrate interactions.


Subject(s)
Alcoholic Beverages , Lignin , Lignin/metabolism , Hydrolysis , Biomass
20.
Pak J Med Sci ; 39(4): 1057-1061, 2023.
Article in English | MEDLINE | ID: mdl-37492323

ABSTRACT

Objective: To determine the clinical effect of lateral rectus abdominis approach and modified Stoppa approach for the surgical treatment of acetabular fractures. Methods: A retrospective analysis was performed on the case data of 30 patients with acetabular fractures admitted to the Department of Orthopaedics of Hengshui City People's Hospital from June 2017 to June 2021. According to the surgical methods, the enrolled patients were divided into the lateral rectus abdominis approach group (observation group) and the modified Stoppa approach group (control group), with 15 patients in each group. Further comparison was made on the incision length, operation time, intraoperative blood loss, length of stay in the hospital, fracture reduction, hip joint function, neurological recovery, and postoperative complications between the two groups. Results: There was no significant difference between the two groups in the length of stay in the hospital, hip joint function score, fracture reduction quality, and excellent-to-good rate of hip joint function (p>0.05). There were significant differences in incision length, intraoperative blood loss, operation time, postoperative motor and touch function scores, and postoperative complication rate between the observation group and the control group (p<0.05). Conclusion: The clinical effect of the lateral rectus abdominis approach is close to that of the modified Stoppa approach for the surgical treatment of acetabular fracture patients. However, and importantly, surgery through the lateral rectus abdominis approach has less trauma, shorter operation time, lower surgical complications, and good postoperative functional recovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...