Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 412
Filter
1.
Article in English | MEDLINE | ID: mdl-38835647

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is the most aggressive malignancy. Psychological distress and elevated CXCL1 level have been reported to be closely associated with the poor prognosis and quality of life of patients with TNBC. In preclinical studies using xenograft mouse models, XIAOPI formula, a nationally approved drug prescribed to patients at high risk for breast cancer, inhibited CXCL1 expression and improved survival. Traditional Chinese medicine has unique advantages in improving patients' emotional disorders and quality of life. However, the impact of XIAOPI formula on the serum level of CXCL1, psychological distress, and quality of life among patients with TNBC is currently unknown. Methods: In this study, we designed a randomized, double-blind, placebo-controlled trial. Patients with TNBC were randomly assigned to receive either the XIAOPI formula or a placebo for three months. The primary outcomes include serum CXCL1 expression, Self-Rating Anxiety Scale (SAS), and the Self-Rating Depression Scale (SDS). Secondary outcomes included the Pittsburgh Sleep Quality Index (PSQI) and the Functional Assessment of Cancer Therapy-Breast (FACT-B). Results: A total of 60 patients with TNBC were enrolled in the investigation. The results showed that the XIAOPI formula significantly decreased CXCL1 expression compared with the control group. Moreover, in comparison to the placebo, the XIAOPI formula increased FACT-B scores while decreasing SDS, SAS, and PSQI scores. Conclusion: In patients with TNBC, XIAOPI formula may be effective in reducing CXCL1 levels, enhancing psychological well-being, and quality of life. While our research offers a natural alternative therapy that may enhance the prognosis of TNBC, future validation of its therapeutic effects will require large-scale, long-term clinical trials. Clinical Registration Number: Registration website: www.chictr.org.cn, Registration date: 2018-1-19, Registration number: ChiCTR1800014535.

2.
RSC Adv ; 14(21): 14775-14783, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38716102

ABSTRACT

The global outbreak of monkeypox virus (MPXV) has highlighted the need for rapid molecular diagnostics techniques. In this study, a single-step recombinase polymerase amplification (RPA)-CRISPR/Cas12a system was developed for rapid and sensitive detection of MPXV. The limit of detection of this assay was 1 copy per µL of extracted nucleic acids. A heating lysis method was integrated to further simplify the sample processing workflow and shorten the assay time to 40 min from sample to result. The reaction mixture can be lyophilized to improve its accessibility in resource-limited settings. The analysis results of the proposed single-step RPA-CRISPR/Cas12a assay for clinical MPXV positive and negative samples were 100% consistent with standard PCR assay. These results demonstrate the feasibility and efficiency of this method for rapid and accurate MPXV detection in real-world settings, showcasing its potential utility in urgent and practical settings.

3.
J Colloid Interface Sci ; 671: 303-311, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38815367

ABSTRACT

Manganese-based cathodes are competitive candidates for state-of-the-art aqueous zinc-ion batteries (AZIBs) because of their easy preparation method, sufficient nature reserve, and environmental friendliness. However, their poor cycle stability and low rate performance have prevented them from practical applications. In this study, Mn3O4 nanoparticles were formed in situ on the surface and between the interlayers of Ti3C2Tx MXene, which was pretreated by the intercalation of K+ ions. Ti3C2Tx MXene not only provides abundant active sites and high conductivity but also hinders the structural damage of Mn3O4 during charging and discharging. Benefiting from the well-designed K-Ti3C2@Mn3O4 structure, the battery equipped with the K-Ti3C2@Mn3O4 cathode achieved a maximum specific capacity of 312 mAh/g at a current density of 0.3 A/g and carried a specific capacity of approximately 120 mAh/g at a current density of 1 A/g, which remained stable for approximately 500 cycles. The performance surpasses that of most reported Mn3O4-based cathodes. This study pioneers a new approach for building better cathode materials for AZIBs.

4.
Nat Commun ; 15(1): 3279, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627378

ABSTRACT

The emerging monkeypox virus (MPXV) has raised global health concern, thereby highlighting the need for rapid, sensitive, and easy-to-use diagnostics. Here, we develop a single-step CRISPR-based diagnostic platform, termed SCOPE (Streamlined CRISPR On Pod Evaluation platform), for field-deployable ultrasensitive detection of MPXV in resource-limited settings. The viral nucleic acids are rapidly released from the rash fluid swab, oral swab, saliva, and urine samples in 2 min via a streamlined viral lysis protocol, followed by a 10-min single-step recombinase polymerase amplification (RPA)-CRISPR/Cas13a reaction. A pod-shaped vest-pocket analysis device achieves the whole process for reaction execution, signal acquisition, and result interpretation. SCOPE can detect as low as 0.5 copies/µL (2.5 copies/reaction) of MPXV within 15 min from the sample input to the answer. We validate the developed assay on 102 clinical samples from male patients / volunteers, and the testing results are 100% concordant with the real-time PCR. SCOPE achieves a single-molecular level sensitivity in minutes with a simplified procedure performed on a miniaturized wireless device, which is expected to spur substantial progress to enable the practice application of CRISPR-based diagnostics techniques in a point-of-care setting.


Subject(s)
Exanthema , Monkeypox virus , Humans , Male , Biological Assay , Cell Death , Nucleotidyltransferases , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , CRISPR-Cas Systems , Recombinases
5.
J Exp Clin Cancer Res ; 43(1): 121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654356

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and chemotherapy still serves as the cornerstone treatment functioning by inducing cytotoxic cell death. Notably, emerging evidence suggests that dying cell-released signals may induce cancer progression and metastasis by modulating the surrounding microenvironment. However, the underlying molecular mechanisms and targeting strategies are yet to be explored. METHODS: Apoptotic TNBC cells induced by paclitaxel or adriamycin treatment were sorted and their released extracellular vesicles (EV-dead) were isolated from the cell supernatants. Chemokine array analysis was conducted to identify the crucial molecules in EV-dead. Zebrafish and mouse xenograft models were used to investigate the effect of EV-dead on TNBC progression in vivo. RESULTS: It was demonstrated that EV-dead were phagocytized by macrophages and induced TNBC metastasis by promoting the infiltration of immunosuppressive PD-L1+ TAMs. Chemokine array identified CXCL1 as a crucial component in EV-dead to activate TAM/PD-L1 signaling. CXCL1 knockdown in EV-dead or macrophage depletion significantly inhibited EV-dead-induced TNBC growth and metastasis. Mechanistic investigations revealed that CXCL1EV-dead enhanced TAM/PD-L1 signaling by transcriptionally activating EED-mediated PD-L1 promoter activity. More importantly, TPCA-1 (2-[(aminocarbonyl) amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide) was screened as a promising inhibitor targeting CXCL1 signals in EVs to enhance paclitaxel chemosensitivity and limit TNBC metastasis without noticeable toxicities. CONCLUSIONS: Our results highlight CXCL1EV-dead as a novel dying cell-released signal and provide TPCA-1 as a targeting candidate to improve TNBC prognosis.


Subject(s)
B7-H1 Antigen , Chemokine CXCL1 , Extracellular Vesicles , Signal Transduction , Triple Negative Breast Neoplasms , Tumor-Associated Macrophages , Animals , Female , Humans , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Extracellular Vesicles/metabolism , Neoplasm Metastasis , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Zebrafish , Tumor-Associated Macrophages/metabolism
6.
Electrophoresis ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38549469

ABSTRACT

The genetic identification of skeletal remains from Chinese People's Volunteers (CPVs) of the Korean War has been challenging because of the degraded DNA samples and the lack of living close relatives. This study established a workflow for identifying CPVs by combining Y-chromosome short tandem repeats (Y-STRs), mitochondrial DNA (mtDNA) hypervariable regions I and II, autosomal STRs (aSTRs), and identity-informative SNPs (iiSNPs). A total of 20 skeletal remains of CPVs and 46 samples from their alleged relatives were collected. The success rate of DNA extraction from human remains was 100%. Based on Y-STRs, six remains shared the same male lineages with their alleged relatives. Meanwhile, mtDNA genotyping supports two remains sharing the same maternal lineages with their alleged relatives. Likelihood ratios (LRs) were further obtained from 27 aSTRs and 94 iiSNPs or 1936 iiSNPs to confirm their relationship. All joint pedigree LRs were >100. Finally, six remains were successfully identified. This pilot study for the systematic genetic identification of CPVs from the Korean War can be applied for the large-scale identification of CPVs in the future.

7.
Emerg Microbes Infect ; 13(1): 2332665, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38517731

ABSTRACT

With the large number of atypical cases in the mpox outbreak, which was classified as a global health emergency by the World Health Organization (WHO) on 23 July 2022, rapid diagnosis of mpox and diseases with similar symptoms to mpox such as chickenpox and respiratory infectious diseases in the early stages of viral infection is key to controlling the spread of the outbreak. In this study, antibodies against the monkeypox virus A29L protein were efficiently and rapidly identified by combining rapid mRNA immunization with high-throughput sequencing of individual B cells. We obtained eight antibodies with a high affinity for A29L validated by ELISA, which were was used as the basis for developing an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobeads (SiTQD-ICA). The SiTQD-ICA biosensor utilizing M53 and M78 antibodies showed high sensitivity and stability of detection: A29L was detected within 20 min, with a minimum detection limit of 5 pg/mL. A specificity test showed that the method was non-cross-reactive with chickenpox or common respiratory pathogens and can be used for early and rapid diagnosis of monkeypox virus infection by antigen detection. This antibody identification method can also be used for rapid acquisition of monoclonal antibodies in early outbreaks of other infectious diseases for various studies.


Subject(s)
Chickenpox , Communicable Diseases , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , Mpox (monkeypox)/diagnosis , Immunization , Antibodies, Monoclonal , High-Throughput Nucleotide Sequencing , RNA, Messenger
8.
Analyst ; 149(7): 2161-2169, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38441624

ABSTRACT

The ABO blood group plays an important role in blood transfusion, linkage analysis, individual identification, etc. Serologic methods of blood typing are gold standards for the time being, which require stable typing antisera and fresh blood samples and are labor intensive. At present, reliable determination of ABO blood group genotypes based on single-nucleotide polymorphisms (SNPs) among A, B, and O alleles remains necessary. Thus, in this work, CRISPR/Cas13a-mediated genotyping for the ABO blood group by detecting SNPs between different alleles was proposed. The ABO*O.01.01(c.261delG) allele (G for the A/B allele and del for the O allele) and ABO*B.01(c.796C > A) allele (C for the A/O allele and A for the B allele) were selected to determine the six genotypes (AA, AO, BB, BO, OO, and AB) of the ABO blood group. Multiplex PCR was adapted to simultaneously amplify the two loci. CRISPR/Cas13a was then used to specifically differentiate ABO*O.01.01(c.261delG) and ABO*B.01(c.796C > A) of A, B, and O alleles. Highly accurate determination of different genotypes was achieved with a limit of detection of 50 pg per reaction within 60 min. The reliability of this method was further validated based on its applicability in detecting buccal swab samples with six genotypes. The results were compared with those of serological and sequencing methods, with 100% accuracy. Thus, the CRISPR/Cas13a-mediated assay shows great application potential in the reliable identification of ABO blood group genotypes in a wide range of samples, eliminating the need to collect fresh blood samples in the traditional method.


Subject(s)
ABO Blood-Group System , Polymorphism, Single Nucleotide , ABO Blood-Group System/genetics , Reproducibility of Results , Clustered Regularly Interspaced Short Palindromic Repeats , Genotype , Multiplex Polymerase Chain Reaction
9.
Article in English | MEDLINE | ID: mdl-38536676

ABSTRACT

Protein-to-protein interaction (PPI) prediction aims to predict whether two given proteins interact or not. Compared with traditional experimental methods of high cost and low efficiency, the current deep learning based approach makes it possible to discover massive potential PPIs from large-scale databases. However, deep PPI prediction models perform poorly on unseen species, as their proteins are not in the training set. Targetting on this issue, the paper first proposes PPITrans, a Transformer based PPI prediction model that exploits a language model pre-trained on proteins to conduct binary PPI prediction. To validate the effectiveness on unseen species, PPITrans is trained with Human PPIs and tested on PPIs of other species. Experimental results show that PPITrans significantly outperforms the previous state-of-the-art on various metrics, especially on PPIs of unseen species. For example, the AUPR improves 0.339 absolutely on Fly PPIs. Aiming to explore the knowledge learned by PPITrans from PPI data, this paper also designs a series of probes belonging to three categories. Their results reveal several interesting findings, like that although PPITrans cannot capture the spatial structure of proteins, it can obtain knowledge of PPI type and binding affinity, learning more than binary PPI.

10.
Sci Total Environ ; 926: 171879, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521271

ABSTRACT

Bacteria and fungi are ubiquitous throughout built environments and are suspended in the air, potentially affecting human health. However, the impacts of climate zones on the diversity, structure, and stochastic assembly of indoor airborne microbes remain unknown. This study comprehensively analyzed indoor airborne microbes across five climate zones in China during the summer and winter using high-throughput sequencing. The diversity and structure of indoor airborne communities vary across climatic zones. A random forest model was used to identify biomarkers in different climate zones. The results showed no relationship between the biomarkers and their rankings in mean relative abundance. The Sloan neutral model fitting results indicated that the impact of climate zones on the stochastic process in the assembly of indoor airborne microbes was considerably more important than that of seasons. Additionally, the influence of seasons on the diversity, structure, and stochastic assembly process of indoor airborne microbes differed among different climate zones. The diversity, structure, and stochastic assembly processes of bacteria present distinctive outcomes in climate zones and seasons compared with those of fungi. Overall, these findings indicate that customized strategies are necessary to manage indoor airborne microbial communities in each climate zone, season, and for specific microbial species.


Subject(s)
Air Pollution, Indoor , Microbiota , Humans , Seasons , Fungi , Bacteria , Air Microbiology , Biomarkers , Air Pollution, Indoor/analysis
11.
Appl Environ Microbiol ; 90(4): e0000724, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38501861

ABSTRACT

With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE: (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.


Subject(s)
Equol , Isoflavones , Animals , Humans , Mice , Rats , Swine , Equol/genetics , Equol/metabolism , Racemases and Epimerases , Chickens/metabolism , Isoflavones/metabolism , Oxidoreductases/metabolism
12.
J Hazard Mater ; 465: 133494, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38228008

ABSTRACT

Staphylococcus aureus (S. aureus) is a prevalent foodborne pathogen that could cause severe food poisoning. Thus, rapid, efficient, and ultrasensitive detection of S. aureus in food samples is urgently needed. Here, we report an efficient magnetic enrichment cascade single-step recombinase polymerase amplification (RPA)-CRISPR/Cas12a assay for the ultrasensitive detection of S. aureus. Magnetic beads (MBs) functionalized with S. aureus-specific antibodies were initially used for S. aureus enrichment from the complex matrix, with 98% capture efficiency in 5 min and 100-fold sensitivity improvement compared with unenriched S. aureus. Next, a single-step RPA-CRISPR/Cas12a-based diagnostic system with optimized extraction-free bacteria lysis was constructed. This assay could detect as low as 1 copy/µL (five copies/reaction) of extracted DNA template and 10 CFU/mL of S. aureus within 40 min. Furthermore, the assay could effectively detect S. aureus in real food samples such as lake water, orange juice, pork, and lettuce, with concordant results to qPCR assays. The proposed cascade signal-amplification assay eliminates the need for lengthy bacterial culture and complex sample preparation steps. Hence, the proposed assay shows great application potential for rapid, efficient, and ultrasensitive detection of pathogens in real food samples.


Subject(s)
Recombinases , Staphylococcus aureus , CRISPR-Cas Systems , Biological Assay , Magnetic Phenomena , Nucleic Acid Amplification Techniques
13.
Eur J Radiol ; 170: 111215, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091663

ABSTRACT

PURPOSE: To evaluate the association between body composition parameters derived from computed tomography (CT) scans and clinical outcomes in patients with severe acute pancreatitis (AP). METHODS: Patients who have been diagnosed AP with a CT scan at ICU admission were included. Body composition parameters were measured on a single slice at L2-3 of the unenhanced CT scans. The intermuscular adipose tissue (IMAT), visceral adipose tissue (VAT), skeletal muscle area (SMA) and skeletal muscle density (SMD) were assessed using HUs by image analysis software. Univariable and multivariable analyses were performed to analyze the association between body composition parameters and clinical outcomes including all-cause mortality or prolonged ICU stay. The area under the curve (AUC) of a receiver operating characteristic curve was used to explore the predictive value of the body composition on treatment clinical outcomes. RESULTS: A total of 158 patients were included. The IMAT (8.3 cm2 vs 6.0 cm2, P = 0.001) and VAT (190.3 cm2 vs 143.7 cm2, P < 0.001) were significantly higher in the severe AP group than in the moderately severe group, but were notassociatedwithoutcomes. For 1 HU of SMD increased, the risk of poor clinical outcomes decresed 11 % (adjusted OR 0.892, 95 %CI 0.806-0.987, P = 0.026), while an SMD below the median value (32.1 HU for males and 28.5 HU for females) was independently associated with worse outcomes in the multivariable analysis (adjusted OR 8.868, 95 % CI 2.146-36.650, P = 0.003). The SMD had a good predictive ability for clinical outcomes, AUC was 0.824 (95 % CI, 0.715-0.933) for males and 0.803 (95 % CI, 0.639-0.967) for females. CONCLUSION: Low SMD was associated with poor outcomes in patients with severe and moderately severe AP and might be used as a novel marker to predict outcomes in patients suffering from severe and moderately severe AP.


Subject(s)
Pancreatitis , Male , Female , Humans , Pancreatitis/diagnostic imaging , Acute Disease , Tomography, X-Ray Computed/methods , Muscle, Skeletal/diagnostic imaging , Adipose Tissue , Body Composition , Retrospective Studies
14.
J Nanobiotechnology ; 21(1): 450, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38001482

ABSTRACT

The outbreak of the monkeypox virus (MPXV) worldwide in 2022 highlights the need for a rapid and low-cost MPXV detection tool for effectively monitoring and controlling monkeypox disease. In this study, we developed a flexible lateral flow immunoassay (LFIA) with strong colorimetric and enhanced fluorescence dual-signal output for the rapid, on-site, and highly sensitive detection of the MPXV antigen in different scenarios. A multilayered SiO2-Au core dual-quantum dot (QD) shell nanocomposite (named SiO2-Au/DQD), which consists of a large SiO2 core (~ 200 nm), one layer of density-controlled gold nanoparticles (AuNPs, 20 nm), and thousands of small QDs, was fabricated instead of a traditional colorimetric nanotag (i.e., AuNPs) and a fluorescent nanotag (QD nanobead) to simultaneously provide good stability, strong colorimetric ability and superior fluorescence intensity. With the dual-signal output LFIA, we achieved the specific screening of the MPXV antigen (A29L) in 15 min, with detection limits of 0.5 and 0.0021 ng/mL for the colorimetric and fluorometric modes, respectively. Moreover, the colorimetric mode of SiO2-Au/DQD-LFIA exhibits the same sensitivity as the traditional AuNP- LFIA, whereas the overall sensitivity of this method on the basis of the fluorescent signal can achieve 238- and 3.3-fold improvements in sensitivity for MPXV compared with the AuNP-based LFIA and ELISA methods, respectively, indicating the powerful performance and good versatility of the dual-signal method in the point-of-care testing of the MPXV.


Subject(s)
Metal Nanoparticles , Monkeypox virus , Gold , Silicon Dioxide , Immunoassay/methods , Limit of Detection
15.
Fa Yi Xue Za Zhi ; 39(5): 478-486, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-38006268

ABSTRACT

Skeleton and teeth are important biological samples. Due to their special structure and strong ability to resist degradation, they are ideal biological materials to retain DNA under natural condition. In many cases, such as historical figure identification, aged skeleton and teeth are usually the only biological samples. However, their DNA is in a state of trace, damage and degradation to different degrees, which requires special experimental treatment to achieve identification. This paper reviews the sample selection, DNA extraction, DNA enrichment and analysis approaches based on relevant research reports in recent years, aiming to promote the further development and improvement of the aged skeleton and teeth identification system.


Subject(s)
Body Remains , Tooth , Humans , Aged , DNA/genetics , DNA/analysis , DNA Fingerprinting , Sequence Analysis, DNA
16.
Adv Sci (Weinh) ; 10(33): e2302423, 2023 11.
Article in English | MEDLINE | ID: mdl-37867227

ABSTRACT

Spleen and lymphoid organs are important targets for messenger RNA (mRNA) delivery in various applications. Current nanoparticle delivery methods rely on drainage to lymph nodes from intramuscular or subcutaneous injections. In difficult-to-transfect antigen-presenting cells (APCs), such as dendritic cells (DCs), effective mRNA transfection remains a significant challenge. In this study, a lymphatic targeting carrier using DC membranes is developed, that efficiently migrated to lymphoid organs, such as the spleen and lymph nodes. The nanoparticles contained an ionizable lipid (YK009), which ensured a high encapsulation efficacy of mRNA and assisted mRNA with endosomal escape after cellular uptake. Dendritic cell-mimicking nanoparticles (DCMNPs) showed efficient protein expression in both the spleen and lymph nodes after intramuscular injections. Moreover, in immunized mice, DCMNP vaccination elicited Spike-specific IgG antibodies, neutralizing antibodies, and Th1-biased SARS-CoV-2-specific cellular immunity. This work presents a powerful vaccine formula using DCMNPs, which represents a promising vaccine candidate for further research and development.


Subject(s)
Nanoparticles , Vaccines , Mice , Animals , Dendritic Cells , RNA, Messenger/metabolism , Immunity, Cellular , Vaccines/metabolism
17.
Front Oncol ; 13: 1147189, 2023.
Article in English | MEDLINE | ID: mdl-37795441

ABSTRACT

Background: Depression increases the risk of breast cancer recurrence and metastasis. However, there lacks potential biomarkers for predicting prognosis in breast cancer. 5-hydroxytryptamine (5-HT) plays a key role in the pathogenesis and treatment of depression. In this study, we developed a prognostic signature based on 5-HT receptors (5-HTRs) and elucidated its potential immune regulatory mechanisms for breast cancer prognosis. Methods: Oncomine, GEPIA, UALCAN, cBioPortal, Kaplan-Meier plotter, and TIMER were used to analyze differential expression, prognostic value, genetic alteration, and immune cell infiltration of HTRs in breast cancer patients. The model training and validation assays were based on the analyses of GSE1456 and GSE86166. A risk signature was established by univariate and multivariate Cox regression analyses. The transwell assay was utilized to verify the effect of the 5-HTRs expression on breast cancer invasion. Effects of HTR2A/2B inhibitor on CD8+ T cell proliferation and infiltration as well as apoptosis of 4T1 cells in the tumor microenvironment were detected by flow cytometry and TUNEL assay. Zebrafish and mouse breast cancer xenografts were used to determine the effect of HTR2A/2B inhibitor on breast cancer metastasis. Results: The expression levels of HTR1A, HTR1B, HTR2A, HTR2B, HTR2C, HTR4, and HTR7 were significantly downregulated in highly malignant breast cancer types. 5-HTRs were significantly associated with recurrence-free survival (RFS) in breast cancer patients. The genetic alteration of HTR1D, HTR3A, HTR3B, and HTR6 in breast cancer patients was significantly associated with shorter overall survival (OS). Finally, HTR2A and HTR2B were determined to construct the risk signature. The expression of HTR2A/2B was positively correlated with the infiltration of immune cells such as CD8+ T cells and macrophages. Furthermore, inhibition of HTR2A expression could suppress CD8+ T cell proliferation and enhance invasion and metastasis of breast cancer cells in both zebrafish and mice model. Conclusions: The HTR2A/2B risk signature not only highlights the significance of HTRs in breast cancer prognosis by modulating cancer immune microenvironment, but also provides a novel gene-testing tool for early prevention of depression in breast cancer patients and lead to an improved prognosis and quality of life.

18.
Phytomedicine ; 120: 155076, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716031

ABSTRACT

BACKGROUND: Bone metastasis occurs in nearly 70% of patients with metastatic prostate cancer (PCa), and represents the leading cause of death in patients with PCa. Emerging evidence has demonstrated the potential activities of icariin in modulating bone metabolism and remodelling the tumor microenvironment (TME). However, whether icariin could inhibit PCa bone metastasis and destruction by modulating the TME as well as the underlying mechanisms remains unclear. PURPOSE: This study investigated whether icariin could inhibit PCa bone metastasis and destruction by modulating the bone TME as well as the underlying mechanisms. METHODS: Osteoclasts were induced from mouse bone marrow-derived macrophages (BMMs) or Raw264.7 cells. PCa cells were cultured in the conditional medium (CM) of macrophages in vitro or co-injected with macrophages in vivo to simulate their coexistence in the TME. Multiple molecular biology experiments and the mouse RM1-Luc PCa bone metastasis model were used to explore the inhibitory activity and mechanism of icariin on PCa metastasis and bone destruction. RESULTS: Icariin treatment significantly suppressed PCa growth, bone metastasis and destruction as well as osteoclastogenesis in vivo. Furthermore, icariin remarkably inhibited osteoclast differentiation, even in the presence of the CM of tumor-associated macrophages (TAMs), while exhibiting no obvious effect on osteoblasts. Moreover, icariin suppressed the M2 phenotype polarization of Raw264.7-derived TAMs and transcriptionally attenuated their CC motif chemokine ligand 5 (CCL5) expression and secretion via inhibiting SPI1. Additionally, CCL5 induced the differentiation and chemotaxis of osteoclast precursor cells by binding with its receptor CCR5. The clinicopathological analysis further verified the positive correlation between the TAM/CCL5/CCR5 axis and osteoclastogenesis within the TME of PCa patients. More importantly, icariin remarkably suppressed PCa metastasis-induced bone destruction in vivo by inhibiting osteoclastogenesis via downregulating the TAM/CCL5 pathway. CONCLUSION: Altogether, these results not only implicate icariin as a promising candidate immunomodulator for PCa bone metastasis and destruction but also shed novel insight into targeting TAM/CCL5-mediated osteoclastogenesis as a potential treatment strategy for osteolytic bone metastasis. This study helps to advance the understanding of the crosstalk between bone TME and bone homeostasis.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Animals , Mice , Male , Humans , Osteogenesis , Ligands , Bone Neoplasms/drug therapy , Chemokines , Prostatic Neoplasms/drug therapy , Disease Models, Animal , Tumor Microenvironment , Chemokine CCL5
19.
J Hazard Mater ; 459: 132192, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37541116

ABSTRACT

A point-of-care testing biosensor that supports direct, sensitive, and simultaneous identification of bacteria and virus is still lacking. In this study, an ultrasensitive immunochromatography assay (ICA) with colorimetric/fluorescence dual-signal output was proposed for flexible and accurate detection of respiratory virus and bacteria in complex samples. Colorimetric AuNPs of 16 nm and two layers of quantum dots (QDs) were coated onto the surface of monolayer graphene oxide (GO) layer by layer to form a multilayered dual-signal nanofilm. This material not only can generate strong colorimetric and fluorescence signals for ICA analysis but also can provide larger surface area, better stability, and superior dispersibility than conventional spherical nanomaterials. Two test lines were built onto the ICA strip to simultaneously detect common respiratory virus influenza A and respiratory bacteria Streptococcus pneumoniae. The dual-signal mode of assay greatly broadened the applied range of ICA method, in which the colorimetric mode allows for quick determination of virus/bacteria and the fluorescence mode ensures the highly sensitive and quantitative detection of target pathogens with detection limits down to 891 copies/mL and 17 cells/mL, respectively. The proposed dual-mode ICA can also be applied directly for real biological and environment samples, which suggests its great potential for field application.


Subject(s)
Metal Nanoparticles , Quantum Dots , Colorimetry/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Quantum Dots/chemistry , Bacteria , Chromatography, Affinity , Limit of Detection
20.
J Therm Biol ; 116: 103587, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37478580

ABSTRACT

Heat stress leads to milk production losses and mammary gland inflammation, which may be associated with mammary epithelium damage. Taurine is one of the most abundant free amino acids in mammals which has anti-inflammatory properties. This study aimed to explore the effect of taurine pretreatment on heat stress-induced mammary epithelial integrity disruption and inflammatory damage. In our first experiment on dairy cows our results showed that compared with animals under autumn thermoneutral condition (THI = 62.99 ± 0.71), summer heat stress (THI = 78.01 ± 0.39) significantly reduced milk yield and disrupted mammary epithelial integrity as revealed by increased concentrations of serotonin and lactose in plasma, and increased levels of SA and Na+/K+ in milk. In our second study, 36 lactating mice were randomly divided into three groups (n = 12) for a 9d experiment using a climate chamber to establish a heat stress model. Our findings suggest taurine pretreatment could attenuate heat stress-induced mammary histopathological impairment, inflammation response, and enhance mammary epithelium integrity, which was mainly achieved by promoting the secretion of ZO-1, Occludin, and Claudin-3 through inhibiting activation of the ERK1/2-MLCK signaling pathway in the mammary gland. Overall, our findings indicated that heat stress induced mammary epithelium dysfunction in dairy cows, and emphasized the protective effect of taurine on mammary health under heat stress conditions using a mouse model, which may be achieved by alleviating the mammary epithelium integrity damage and inflammation response.


Subject(s)
Lactation , MAP Kinase Signaling System , Animals , Cattle , Female , Heat-Shock Response , Inflammation/drug therapy , Inflammation/metabolism , Mammals , Mammary Glands, Animal/physiology , Milk/chemistry , Signal Transduction , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...