Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Gene ; 688: 182-192, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30521888

ABSTRACT

The HOTAIR transcript is transcribed from the antisense strand within the HOXC gene cluster, and it is thought to play a role in regulating the inductive capacity of dermal papilla cells during the reconstruction of hair-follicle. In the current investigation, we firstly isolated and characterized a lncRNA-HOTAIR transcript from the secondary hair follicle of cashmere goat. Also, we analyzed its transcriptional pattern and methylation level of HOTAIR gene promoter in secondary hair follicle of cashmere goat during anagen and telogen stages. Nucleotide composition analysis indicated that the contents of Adenine (A) and Thymine (T) are higher than that of Guanine (G) and Cytosine (C) in lncRNA-HOTAIR transcript of cashmere goat with the highest frequency distribution of AG nucleotide pair (8.06%). The regulatory network analysis showed a directly or indirectly complex regulatory relationships between lncRNA-HOTAIR of cashmere goat and its potential target molecules: miRNAs, mRNAs and proteins. Also, we showed that lncRNA-HOTAIR was properly transcribed at both anagen and telogen stages of secondary hair follicle of cashmere goat with the anagen being significantly higher than telogen in its expression, which suggest that lncRNA-HOTAIR transcript might be involved in the reconstruction of secondary hair follicle with the formation and growth of cashmere fiber. Taken together with methylation analysis of HOTAIR gene promoter, our data suggest that the promoter methylation of HOTAIR gene most likely is involved in its transcriptional suppression in secondary hair follicle of cashmere goat.


Subject(s)
Gene Regulatory Networks/genetics , Goats/genetics , Hair Follicle/metabolism , Animals , Base Sequence , Gene Expression Profiling/methods , Methylation , MicroRNAs/genetics , Promoter Regions, Genetic/genetics , RNA, Long Noncoding , RNA, Messenger/genetics
2.
Gene ; 641: 78-85, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29054756

ABSTRACT

The H19 transcript (imprinted maternally expressed transcript) is well-known as long noncoding RNA (lncRNA), and it is thought to be associated with the inductive capacity of dermal papilla cells for hair-follicle reconstruction. In this study, we isolated and characterized a lncRNA-H19 transcript from the secondary hair follicle of Liaoning cashmere goat. Also, we investigated its transcriptional pattern and methylation status of H19 gene in secondary hair follicle of this breed during different stages of hair follicle cycle. Nucleotide composition analysis indicated that guanine (G) and cytosine (C) are the dominant nucleotides in the lncRNA-H19 transcript of Liaoning cashmere goat with the highest frequency distribution (11.25%) of GG nucleotide pair. The regulatory network showed that lncRNA-H19 transcript appears to have remarkably diverse regulatory relationships with its related miRNAs and the potential target genes. In secondary hair follicle, the relative expression of lncRNA-H19 transcript at the anagen phase is significantly higher than that at both telogen and catagen phases suggesting that lncRNA-H19 transcript might play essential roles in the formation and growth of cashmere fiber of goat. Methylation analysis indicated that the methylation of the promoter region of H19 gene most likely participates in its transcriptional suppression in secondary hair follicle of Liaoning cashmere goat.


Subject(s)
Animal Fur/cytology , DNA Methylation/genetics , Goats/genetics , Promoter Regions, Genetic/genetics , RNA, Long Noncoding/genetics , Animals , Base Composition/genetics , Base Sequence , Gene Expression Regulation/genetics , Hair Follicle/cytology
3.
Anim Biotechnol ; 29(3): 199-211, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-28846493

ABSTRACT

Long noncoding RNAs (lncRNAs) are a novel class of eukaryotic transcripts. They are thought to act as a critical regulator of protein-coding gene expression. Herein, we identified and characterized 13 putative lncRNAs from the expressed sequence tags from secondary hair follicle of Cashmere goat. Furthermore, we investigated their transcriptional pattern in secondary hair follicle of Liaoning Cashmere goat during telogen and anagen phases. Also, we generated intracellular regulatory networks of upregulated lncRNAs at anagen in Wnt signaling pathway based on bioinformatics analysis. The relative expression of six putative lncRNAs (lncRNA-599618, -599556, -599554, -599547, -599531, and -599509) at the anagen phase is significantly higher than that at telogen. Compared with anagen, the relative expression of four putative lncRNAs (lncRNA-599528, -599518, -599511, and -599497) was found to be significantly upregulated at telogen phase. The network generated showed that a rich and complex regulatory relationship of the putative lncRNAs and related miRNAs with their target genes in Wnt signaling pathway. Our results from the present study provided a foundation for further elucidating the functional and regulatory mechanisms of these putative lncRNAs in the development of secondary hair follicle and cashmere fiber growth of Cashmere goat.


Subject(s)
Goats/genetics , Hair Follicle/metabolism , RNA, Long Noncoding/genetics , Wnt Signaling Pathway/genetics , Animals , Female , Gene Regulatory Networks/genetics , Goats/metabolism , RNA, Long Noncoding/analysis , RNA, Long Noncoding/metabolism
4.
Genetica ; 145(1): 115-126, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28093668

ABSTRACT

Homeobox protein Hox-C8 (HOXC8) is a member of Hox family. It is expressed in the dermal papilla of the skin and is thought to be associated with the hair inductive capacity of dermal papilla cells. In the present study, we isolated and characterized a full-length open reading frame of HOXC8 cDNA from the skin tissue of Liaoning cashmere goat, as well as, established a phylogenetic relationship of goat HOXC8 with that of other species. Also, we investigated the effect of methylation status of HOXC8 exon 1 at anagen secondary hair follicle on the cashmere fiber traits in Liaoning cashmere goat. The sequence analysis indicated that the obtained cDNA was 1134-bp in length containing a complete ORF of 729-bp. It encoded a peptide of 242 amino acid residues in length. The structural analysis indicated that goat HOXC8 contained a typical homeobox domain. The phylogenetic analysis revealed that Capra hircus HOXC8 had a closer genetic relationship with that of Ovis aries, followed by Bos Taurus and Bubalus bubalis. The methylation analysis suggested that the methylation degree of HOXC8 exon 1 in anagen secondary hair follicle might be involved in regulating the growth of cashmere fiber in Liaoning cashmere goat. Our results provide new evidence for understanding the molecular structural and evolutionary characteristics of HOXC8 in Liaoning cashmere goat, as well as, for further insight into the role of methylation degree of HOXC8 exon 1 regulates the growth of cashmere fiber in goat.


Subject(s)
DNA Methylation , Exons , Genetic Association Studies , Goats/genetics , Homeodomain Proteins/genetics , Quantitative Trait, Heritable , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , CpG Islands , Evolution, Molecular , Goats/classification , Phylogeny , Polymorphism, Genetic , Sequence Analysis, DNA
5.
Genetica ; 144(4): 457-67, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27406581

ABSTRACT

Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family (BMPs). It is involved in the development and cycle of hair follicle, as well as, is thought to be a potential candidate gene for cashmere traits in goats. In the present study, we isolated and characterized a full-length open reading frame (ORF) of BMP4 cDNA from the skin tissue of Liaoning cashmere goat, and investigated the transcriptional pattern and methylation status of BMP4 gene in skin tissue of this breed during different stages of hair follicle cycle. The sequence analysis indicated that the isolated cDNA was 1264-bp in length containing a complete ORF of 1230-bp. It encoded a precursor peptide of 409 amino acids with a signal peptide of 19 amino acids. The structural analysis indicated that goat BMP4 contains typical TGF-ß propeptide and TGF-ß domains. In skin tissue, BMP4 is generally transcribed in an ascendant pattern from anagen to telogen. The methylation level of 5' flanking regulatory region of BMP4 gene might be involved in its mRNA expression in skin tissue: a higher BMP4 methylation level in skin coincides with a lower expression of BMP4 mRNA. These results from the present work provided a foundation for further insight into the functional and regulatory characteristics of BMP4 in the development and cycle of hair follicle in Liaoning Cashmere goat.


Subject(s)
Bone Morphogenetic Protein 4/genetics , DNA Methylation , Gene Expression Regulation , Goats/genetics , Hair Follicle/metabolism , Skin/metabolism , Amino Acid Sequence , Animals , Base Sequence , Bone Morphogenetic Protein 4/chemistry , Cloning, Molecular , CpG Islands , DNA, Complementary/genetics , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Sequence Analysis, DNA , Transcription, Genetic
6.
Anim Biotechnol ; 27(2): 104-12, 2016.
Article in English | MEDLINE | ID: mdl-26913551

ABSTRACT

MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules that negatively regulate gene expression. Herein, we investigated a selective number of miRNAs for their expression in skin tissue of Liaoning Cashmere goat during hair follicle cycles, and their intracellular regulatory networks were constructed based on bioinformatics analysis. The relative expression of six miRNAs (mir-103-3p, -15b-5p, 17-5p, -200b, -25-3p, and -30c-5p) at anagen phase is significantly higher than that at catagen and/or telogen phases. In comparison to anagen, the relative expression of seven miRNAs (mir-148a-3p, -199a-3p, -199a-5p, -24-3p, -30a-5p, -30e-5p, and -29a-3p) was revealed to be significantly up-regulated at catagen and/or telogen stages. The network analyses of miRNAs indicated those miRNAs investigated might be directly or indirectly involved in several signaling pathways through their target genes. These results provided a foundation for further insight into the roles of these miRNAs in skin tissue of Liaoning Cashmere goat during hair follicle cycles.


Subject(s)
Goats/genetics , Hair Follicle/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Goats/metabolism , MicroRNAs/analysis
SELECTION OF CITATIONS
SEARCH DETAIL