Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38013444

ABSTRACT

BACKGROUND: Cervical spondylotic radiculopathy is a common form of cervical spondylosis caused by degeneration of the cervical spine. Currently, non-surgical treatment is the preferred treatment method, and Chinese medicine is widely used. OBJECTIVE: To investigate the effect of radiculopathy spondylosis by tuina spinning and lifting technique. EXPERIMENTAL DESIGN: We conducted a 12-week, open-label, analyst-blinded, randomized clinical trial ( 2 weeks of intervention plus 10 weeks of observational follow-up ). A total of 25 patients with radiculopathy were collected, and data was analyzed during the treatment and recovery period. INTERVENTIONS: Neck pain granules group: a package of oral neck pain granules after meals, three times a day, treatment for 2 weeks; neck pain granules combined with massage lifting technique, treatment group: use, massage lifting technique treatment, once every two days, normal take neck pain granules, treatment for 2 weeks. All cases were followed up for 2.5 months. Main monitoring indicators: Visual Analog Scale, Neck Dysfunction Index score, and Tanaka jiu ( Tanaka Yasuhisa Cervical Spondylosis Symptom Scale ) were recorded on time, and statistical statistics were made. RESULT: The scores of VAS and NDI were significantly more effective in the neck pain granules combined with the tuina group than in the neck pain granules group, while the Tanaka Yasuhisa Cervical Spondylosis Symptom Scale was not significantly different between the two groups. CONCLUSION: The treatment effect of neck pain granules combined with tuina was significantly better than that of traditional Chinese medicine alone.

2.
J Pathol ; 261(1): 105-119, 2023 09.
Article in English | MEDLINE | ID: mdl-37550813

ABSTRACT

Granulomatous slack skin (GSS) is an extremely rare subtype of cutaneous T-cell lymphoma accompanied by an abundant number of macrophages and is clinically characterized by the development of pendulous skin folds. However, the characteristics of these macrophages in GSS remain unclear. Here, we conducted a spatial transcriptomic study on one frozen GSS sample and drew transcriptomic maps of GSS for the first time. Gene expression analysis revealed the enrichment of three clusters with macrophage transcripts, each exhibiting distinct characteristics suggesting that their primary composition consists of different subpopulations of macrophages. The CD163+ /CD206+ cluster showed a tumor-associated macrophage (TAM) M2-like phenotype and highly expressed ZFP36, CCL2, TNFAIP6, and KLF2, which are known to be involved in T-cell interaction and tumor progression. The APOC1+ /APOE+ cluster presented a non-M1 or -M2 phenotype and may be related to lipid metabolism. The CD11c+ /LYZ+ cluster exhibited an M1-like phenotype. Notably, these cells strongly expressed MMP9, MMP12, CHI3L1, CHIT1, COL1A1, TIMP1, and SPP1, which are responsible for extracellular matrix (ECM) degradation and tissue remodeling. This may partially explain the symptoms of cutaneous relaxation in GSS. Further immunohistochemistry on four GSS cases demonstrated that CD11c predominantly marked granulomas and multinucleated giant cells, whereas CD163 was mainly expressed on scattered macrophages, appearing as a mutually exclusive pattern. The expression pattern of MMP9 overlapped with that of CD11c, implying that CD11c+ macrophages may be a source of MMP9. Our data shed light on the characteristics of macrophages in the GSS microenvironment and provide a theoretical basis for the application of MMP9 inhibitors to prevent cutaneous relaxation of GSS. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , Matrix Metalloproteinase 9 , Skin Neoplasms/genetics , Tumor Microenvironment , Transcriptome , Lymphoma, T-Cell, Cutaneous/complications , Lymphoma, T-Cell, Cutaneous/diagnosis , Lymphoma, T-Cell, Cutaneous/pathology , Macrophages/pathology , Gene Expression Profiling
3.
Nat Metab ; 5(5): 842-860, 2023 05.
Article in English | MEDLINE | ID: mdl-37188818

ABSTRACT

Different organs undergo distinct transcriptional, epigenetic and physiological alterations that guarantee their functional maturation after birth. However, the roles of epitranscriptomic machineries in these processes have remained elusive. Here we demonstrate that expression of RNA methyltransferase enzymes Mettl3 and Mettl14 gradually declines during postnatal liver development in male mice. Liver-specific Mettl3 deficiency causes hepatocyte hypertrophy, liver injury and growth retardation. Transcriptomic and N6-methyl-adenosine (m6A) profiling identify the neutral sphingomyelinase, Smpd3, as a target of Mettl3. Decreased decay of Smpd3 transcripts due to Mettl3 deficiency results in sphingolipid metabolism rewiring, characterized by toxic ceramide accumulation and leading to mitochondrial damage and elevated endoplasmic reticulum stress. Pharmacological Smpd3 inhibition, Smpd3 knockdown or Sgms1 overexpression that counteracts Smpd3 can ameliorate the abnormality of Mettl3-deficent liver. Our findings demonstrate that Mettl3-N6-methyl-adenosine fine-tunes sphingolipid metabolism, highlighting the pivotal role of an epitranscriptomic machinery in coordination of organ growth and the timing of functional maturation during postnatal liver development.


Subject(s)
Liver , Methyltransferases , Mice , Male , Animals , Methyltransferases/genetics , Methyltransferases/metabolism , Liver/metabolism , Hepatocytes/metabolism , Ceramides , Endoplasmic Reticulum Stress , Adenosine/metabolism , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism
4.
Adv Sci (Weinh) ; 9(35): e2204697, 2022 12.
Article in English | MEDLINE | ID: mdl-36310151

ABSTRACT

Hepatic ischemia-reperfusion (IR) injury remains a common issue lacking effective strategy and validated pharmacological targets. Here, using an unbiased metabolomics screen, this study finds that following murine hepatic IR, liver 3-hydroxyanthranilic acid (3-HAA) and quinolinic acid (QA) decline while kynurenine and kynurenic acid (KYNA) increase. Kynurenine aminotransferases 2, functioning at the key branching point of the kynurenine pathway (KP), is markedly upregulated in hepatocytes during ischemia, shifting the kynurenine metabolic route from 3-HAA and QA to KYNA synthesis. Defects in QA synthesis impair de novo nicotinamide adenine dinucleotide (NAD) biosynthesis, rendering the hepatocytes relying on the salvage pathway for maintenance of NAD and cellular antioxidant defense. Blocking the salvage pathway following IR by the nicotinamide phosphoribosyltransferase inhibitor FK866 exacerbates liver oxidative damage and enhanced IR susceptibility, which can be rescued by the lipid peroxidation inhibitor Liproxstatin-1. Notably, nicotinamide mononucleotide administration once following IR effectively boosts NAD and attenuated IR-induced oxidative stress, inflammation, and cell death in the murine model. Collectively, the findings reveal that metabolic rewiring of the KP partitions it away from NAD synthesis in hepatic IR pathophysiology, and provide proof of concept that NAD augmentation is a promising therapeutic measure for IR-induced liver injury.


Subject(s)
Kynurenine , Reperfusion Injury , Mice , Animals , Kynurenine/metabolism , NAD/metabolism , Liver/metabolism , Reperfusion Injury/metabolism , Homeostasis
5.
Cancer Biol Med ; 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34652890

ABSTRACT

OBJECTIVE: Androgen deprivation therapy (ADT) is still the principal treatment option for prostate cancer (PCa). In addition to reactivation of androgen receptor signaling, the resistance of PCa to apoptosis during ADT also contributes to castration resistant PCa (CRPC). A previous study reported that gene transfer of IL-13Rα2 into PCa cells sensitized the cells to the IL-13R-targeted cytotoxin IL13Rα1, leading to apoptosis. Compared with IL-13Rα2, IL13Rα1 is more constitutively expressed in PCa cells, but its function in PCa remains to be established. METHODS: We determined the role and expression of IL13Rα1 in PCa cancer cells using western blotting, flow cytometry, and cell proliferation assays. Co-immunoprecipitation and mass spectrometry were used to identify the proteins that interacted with IL13Rα1, to elucidate its function. RESULTS: In this study, we showed that IL13Rα1 was selectively suppressed in androgen-deprived PCa cells and that its suppression tended to be associated with poor prognoses of PCa patients. IL13Rα1 overexpression promoted apoptosis and inhibited tumor growth under androgen-deprived or castrated conditions (P < 0.01). Mechanistically, IL13Rα1 recruited and facilitated ubiquitin protein ligase E3C-mediated ubiquitination and degradation of hexokinase 2 (HK2), resulting in glycolytic inhibition and eventually leading to PCa cell apoptosis. Furthermore, our data revealed that mutated ataxia-telangiectasia kinase phosphorylated and facilitated the selective ubiquitin proteasome-mediated degradation of HK2. Notably, IL13Rα1-overexpressing PCa cells were more susceptible to apoptosis and exhibited reduced tumor growth after exposure to the HK2 inhibitor, 2-deoxy-D-glucose (P < 0.01). CONCLUSIONS: Our data identified a tumor suppressor role for IL13Rα1 in preventing the resistance of PCa cells to apoptosis during androgen deprivation by inhibiting glycolysis. IL13Rα1-mediated signaling involving HK2 may therefore provide a novel treatment target and strategy for CRPC.

6.
Biosci Trends ; 15(2): 83-92, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33952804

ABSTRACT

E2F transcription factor 2 (E2F2) is a member of the E2F family of transcription factors. The classical view is that some E2Fs act as "activators" and others "inhibitors" of cell cycle gene expression. However, the so-called "activator" E2F2 is particularly enigmatic, with seemingly contradictory roles in the cell cycle, proliferation, apoptosis, inflammation, and cell migration and invasion. How can we rationalize the apparently opposing functions of E2F2 in different situations? This is difficult because different methods of studying E2F2 have yielded conflicting results, so extrapolating mechanisms from an observed endpoint is challenging. This review will attempt to summarize and clarify these issues. This review focuses on genetic studies that have helped elucidate the biological functions of E2F2 and that have enhanced our understanding of how E2F2 is integrated into pathways controlling the cell cycle, proliferation, apoptosis, inflammation, and cell migration and invasion. This review will also discuss the function of E2F2 in cancer and other diseases. This review provides a strong basis for further research on the biological function and clinical potential of E2F2.


Subject(s)
E2F2 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Animals , Apoptosis/genetics , Cell Cycle/genetics , Cell Division/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Disease Models, Animal , Humans , Inflammation/genetics , Neoplasm Invasiveness/genetics , Neoplasms/immunology , Neoplasms/pathology
7.
Oncogene ; 39(2): 356-367, 2020 01.
Article in English | MEDLINE | ID: mdl-31477836

ABSTRACT

Reactive oxygen species (ROS) and ROS-induced oxidative stress are associated with prostate cancer (PCa) development and castrate-resistant tumor progression. This is in part through the activation of the androgen receptor (AR) signaling. However, the molecular underpinning of ROS to activate AR remains poorly understood. Here, we report that the thioredoxin domain-containing 9 (TXNDC9) is an important regulator of ROS to trigger AR signaling. TXNDC9 expression is upregulated by ROS inducer, and increased TXNDC9 expression in patient tumors is associated with advanced clinical stages. TXNDC9 promotes PCa cell survival and proliferation. It is required for AR protein expression and AR transcriptional activity under oxidative stress conditions. Mechanistically, ROS inducers promote TXNDC9 to dissociate from PRDX1, but enhance a protein association with MDM2. Concurrently, PRDX1 enhances its association with AR. These protein interaction exchanges result in not only MDM2 protein degradation, but also PRDX1 mediated AR protein stabilization, and subsequent elevation of AR signaling. Blocking PRDX1 by its inhibitor, Conoidin A (CoA), suppresses AR signaling, PCa cell proliferation, and xenograft tumor growth even under androgen-deprived conditions. These tumor-suppressive effects of CoA were further strengthened when in combination with enzalutamide treatment. Together, these studies demonstrate that the TXNDC9-PRDX1 axis plays an important role for ROS to activate AR functions. It provides a proof-of-principle that co-targeting AR and PRDX1 may be more effective to control PCa growth.


Subject(s)
Peroxiredoxins/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Thioredoxins/genetics , Animals , Benzamides , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Male , Mice , Nitriles , Oxidative Stress/genetics , Peroxiredoxins/antagonists & inhibitors , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Stability , Proto-Oncogene Proteins c-mdm2/genetics , Quinoxalines/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction
8.
J Air Waste Manag Assoc ; 69(12): 1467-1478, 2019 12.
Article in English | MEDLINE | ID: mdl-31524083

ABSTRACT

In this study, biomass of rice straw (RS) and wood (WD) and their torrefied biomass (RST and WDT) were used as solid biofuel (SBF) for co-firing individually with coal in a commercial continuous chain-grate steam boiler system, which was conducted at fixed input rate of heating value of mixture of SBF and coal and at fixed airflow rate. The effects of key system parameters on the gaseous and particulate pollutions and ash were examined. These include SBF type and blending ratio (RBL) of biomass (i.e., SBF) in the mixture of coal and biomass based on heating values for co-firing.The results indicated that wood, which possesses high heating value while less amount of ash, is more suitable for co-firing with coal than rice straw. Torrefaction can increase the heating value of biomass and homogenize its property, being beneficial to co-firing. Also, torrefaction can decompose the hydroxyl group of biomass, which makes biomass tending to possess hydrophobicity. This, in turn, helps the storage and transportation of biomass. Generally, adding the RS (with RBL = 5-10%), WD (2-15%), RST (2-10%) and WDT (2-20%), respectively, with coal decreases the emissions of NOx and SO2, but increases that of CO (except RST). The emission of HCl is little. The addition of biomass also increases the emission of fine particulate matters (PM) especially PM2.5 in the flue gases, raising PM2.5/PM100 from 34.87 to 78.35 wt.% (Case 50%WDT). These emissions for the Cases tested satisfy with Taiwanese emission standards of stationary sources which set limitations of NOx, SO2, CO and HCl < 350, 300, 2000 and 80 ppmv, while PM < 50 mg/m3, respectively. The results support the use of RS, WD, RST and WDT for co-firing with coal.Implications: This study examined the suitability of using solid bio-fuels to co-fire with coal in an industrial chain-grate steam boiler system with a capacity of 100 kW, in order to achieve carbon-free emissions. Both biomass and torrefied biomass of solid bio-fuel were tested. The findings would be useful for proper design and rational operation of solid bio-fuel/coal co-firing combustion matching the appeal of sustainable material management and circular economy of biomass, and of adaptation of global warming induced by greenhouse gases. It also provides information for policy-makers to promote the co-firing application of biomass and related bio-waste materials.


Subject(s)
Air Pollutants/chemistry , Biomass , Coal/analysis , Wood/chemistry , Gases , Heating , Incineration , Oryza , Particulate Matter/analysis
9.
Arthritis Res Ther ; 21(1): 87, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944034

ABSTRACT

INTRODUCTION: Abnormal glycolytic metabolism contributes to joint inflammation and destruction in rheumatoid arthritis (RA). We examine the expression and function of hexokinases in RA and evaluate the potential of their specific inhibitor for clinical treatment. METHODS: Detection of HKs was assessed in synovial tissue by immunohistology and Western blot. SiRNA and a specific hexokinases inhibitor, lonidamine (LND), were used to evaluate the role of hexokinase-I/II (HK-I/II). Pro-inflammatory and glycolysis factors, cell viability, and apoptosis were assessed by ELISA, RT-qPCR, MTS, and flow cytometry. The clinical effects of LND on type II collagen-induced arthritis (CIA) in DBA-/1 mouse model was evaluated by scoring their clinical responses, synovitis, and cartilage destructions, and ELISA was employed to analyze the concentrations of antibody in the serum of CIA model. RESULTS: HK-I/II expression and their activities increased in the synovium of RA compared with osteoarthritis (OA). Silencing HK-I/II (siHK-I/II) or LND treatment decreased the production of pro-inflammatory factors, such as IL-6, IL-8, CXCL9, CXCL10, and CXCL11, and cell viability, but induced cell apoptosis of RASFs. The expression of TNF-α and IL-1ß of macrophage in response to LPS stimulation were depressed as well after treatment with siHK-I/II or LND. Furthermore, leucocyte infiltration co-cultured with RASFs was also suppressed after inhibiting the expression or activity of HK-I/II. These anti-inflammatory effects overlapped with their anti-glycolytic activities. Treatment with LND in mice with CIA decreased the production of antibodies against IgG1, IgG2a, and IgG2b and consequently attenuated joint inflammation and destruction. CONCLUSIONS: HK-I/II contribute to shape the inflammatory phenotype of RASFs and macrophages. LND may be a potential drug in treating patients with RA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Hexokinase/antagonists & inhibitors , Indazoles/pharmacology , RNA Interference , Synovial Membrane/drug effects , Adult , Aged , Animals , Apoptosis/drug effects , Arthritis, Experimental/blood , Arthritis, Experimental/pathology , Arthritis, Experimental/prevention & control , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Cytokines/metabolism , Female , Hexokinase/genetics , Hexokinase/metabolism , Humans , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred DBA , Middle Aged , Synovial Membrane/enzymology , Synovial Membrane/metabolism , Synoviocytes/cytology , Synoviocytes/drug effects , Synoviocytes/metabolism , THP-1 Cells
10.
Arthritis Res Ther ; 20(1): 225, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30286793

ABSTRACT

BACKGROUND: Expression of E2F transcription factor 2 (E2F2), a transcription factor related to the cell cycle, is abnormally high in rheumatoid arthritis synovial fibroblasts (RASFs). Deregulated expression of E2F2 leads to abnormal production of proinflammatory cytokines, such as interleukin (IL)-1α, IL-1ß, and tumor necrosis factor (TNF)-α in RASFs. However, the underlying mechanism by which E2F2 regulates expression of IL-1α, IL-1ß, and TNF-α has not been fully elucidated. This study aimed to elucidate this mechanism and confirm the pathological roles of E2F2 in rheumatoid arthritis (RA). METHODS: E2f2 knockout (KO) and wild-type (WT) mice were injected with collagen to induce RA. Cytokine production was assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Western blot and qRT-PCR were performed to evaluate the effect of E2F2 on signaling pathway activity. Chromatin immunoprecipitation (ChIP)-PCR and luciferase assays were used to detect the transcriptional activity of target genes of E2F2. Nuclear translocation of STAT1 and p65 were assayed by Western blot, co-immunoprecipitation (co-IP), and immunofluorescence experiments. RESULTS: The occurrence and severity of collagen-induced arthritis were decreased in E2f2-KO mice compared with WT mice. The expression of IL-1α, IL-1ß, and TNF-α was also suppressed in mouse embryonic fibroblasts (MEFs) from E2f2-KO mice and RASFs with E2F2 knocked down. Mechanistically, we found that E2F2 can upregulate the expression of STAT1 and MyD88 through direct binding to their promoters, facilitate the formation of STAT1/MyD88 complexes, and consequently activate AKT. However, silencing STAT1/MyD88 or inactivating AKT significantly attenuated the induction of IL-1α, IL-1ß, and TNF-α caused by the introduction of E2F2. CONCLUSIONS: This study confirms the pathological role of E2F2 in RA and found that the E2F2-STAT1/MyD88-Akt axis is closely related with the inflammatory phenotype in RASFs.


Subject(s)
Arthritis, Rheumatoid/metabolism , E2F2 Transcription Factor/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT1 Transcription Factor/metabolism , Adult , Aged , Animals , Arthritis, Rheumatoid/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Phenotype , Protein Binding/physiology , Signal Transduction/physiology , Synovial Membrane/metabolism , Synovial Membrane/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...