Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 511
Filter
1.
Small ; : e2402528, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845027

ABSTRACT

The crystal structure and phase stability of a host lattice plays an important role in efficient upconversion phenomena. In stable hosts, lanthanides doping should not generally change the crystal structure of the host itself. But when phase of a system drastically changes after lanthanide doping resulting in multiple phases, accurate identification of upconverting phase remains a challenge. Herein, an attempt to synthesize lanthanide-doped NiMoO4 by microwave hydrothermal method produced MoO3/Yb2Mo4O15/NiMoO4 micro-nano composite upconversion phosphor. A combined approach of density functional theory (DFT) calculations and single-particle-level upconversion imaging has been employed to elucidate the phase stability of different phases and upconversion properties within the composite. Through single-particle-level imaging under 980 nm excitation, an unprecedented resolution in visualizing individual emitting and non-emitting regions within the composite has been achieved, thereby allowing to accurately assign the Yb2Mo4O15 as a sole upconversion emitting phase in the composite. Result of the DFT calculation further shows that the Yb2Mo4O15 phase is the most thermodynamically preferred over other lanthanide-doped phases in the composite. This comprehensive understanding not only advances the knowledge of upconversion emission from composite materials but also holds promise for tailoring optical properties of materials for various applications, including bioimaging, sensing, and photonics, where controlled light emission is crucial.

2.
Sci Adv ; 10(23): eadj0385, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848354

ABSTRACT

Excess gene dosage from chromosome 21 (chr21) causes Down syndrome (DS), spanning developmental and acute phenotypes in terminal cell types. Which phenotypes remain amenable to intervention after development is unknown. To address this question in a model of DS neurogenesis, we derived trisomy 21 (T21) human induced pluripotent stem cells (iPSCs) alongside, otherwise, isogenic euploid controls from mosaic DS fibroblasts and equipped one chr21 copy with an inducible XIST transgene. Monoallelic chr21 silencing by XIST is near-complete and irreversible in iPSCs. Differential expression reveals that T21 neural lineages and iPSCs share suppressed translation and mitochondrial pathways and activate cellular stress responses. When XIST is induced before the neural progenitor stage, T21 dosage correction suppresses a pronounced skew toward astrogenesis in neural differentiation. Because our transgene remains inducible in postmitotic T21 neurons and astrocytes, we demonstrate that XIST efficiently represses genes even after terminal differentiation, which will empower exploration of cell type-specific T21 phenotypes that remain responsive to chr21 dosage.


Subject(s)
Cell Differentiation , Down Syndrome , Gene Dosage , Induced Pluripotent Stem Cells , Neurogenesis , RNA, Long Noncoding , Down Syndrome/genetics , Humans , Neurogenesis/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics , Cell Differentiation/genetics , Chromosomes, Human, Pair 21/genetics , Neurons/metabolism
3.
Food Chem ; 453: 139601, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754350

ABSTRACT

Phenyllactic acid (PLA) as a natural phenolic acid exhibits antibacterial activity against non-spore-forming bacteria, while the inhibitory effect against bacterial spore remained unknown. Herein, this study investigated the inactivation effect of PLA against Bacillus cereus spores. The results revealed that the minimum inhibitory concentration of PLA was 1.25 mg/mL. PLA inhibited the outgrowth of germinated spores into vegetative cells rather than germination of spores. PLA disrupted the spore coat, and damaged the permeability and integrity of inner membrane. Moreover, PLA disturbed the establishment of membrane potential due to the inhibition of oxidative metabolism. SEM observations further visualized the morphological changes and structural disruption caused by PLA. Besides, PLA caused the degradation of DNA of germinated spores. Finally, PLA was applied in milk beverage, and showed promising inhibitory effect against B. cereus spores. This finding could provide scientific basis for the application of PLA against spore-forming bacteria in food industry.


Subject(s)
Anti-Bacterial Agents , Bacillus cereus , Milk , Spores, Bacterial , Bacillus cereus/growth & development , Bacillus cereus/drug effects , Bacillus cereus/metabolism , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism , Milk/chemistry , Milk/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Beverages/analysis , Beverages/microbiology , Microbial Sensitivity Tests , Lactates/pharmacology , Lactates/chemistry , Lactates/metabolism
4.
PLoS One ; 19(5): e0300787, 2024.
Article in English | MEDLINE | ID: mdl-38753634

ABSTRACT

The Presenilin (Psn) gene is closely related to aging, but it is still unclear the role of Psn genes in skeletal muscle. Here, the Psn-UAS/Mhc-GAL4 system in Drosophila was used to regulate muscle Psn overexpression(MPO) and muscle Psn knockdown(MPK). Drosophila were subjected to endurance exercise from 4 weeks to 5 weeks old. The results showed that MPO and exercise significantly increased climbing speed, climbing endurance, lifespan, muscle SOD activity, Psn expression, Sirt1 expression, PGC-1α expression, and armadillo (arm) expression in aged Drosophila, and they significantly decreased muscle malondialdehyde levels. Interestingly, when the Psn gene is knockdown by 0.78 times, the PGC-1α expression and arm expression were also down-regulated, but the exercise capacity and lifespan were increased. Furthermore, exercise combined with MPO further improved the exercise capacity and lifespan. MPK combined with exercise further improves the exercise capacity and lifespan. Thus, current results confirmed that the muscle Psn gene was a vital gene that contributed to the healthy aging of skeletal muscle since whether it was overexpressed or knocked down, the aging progress of skeletal muscle structure and function was slowed down by regulating the activity homeostasis of Sirt1/PGC-1α pathway and Psn/arm pathway. Exercise enhanced the function of the Psn gene to delay skeletal muscle aging by up regulating the activity of the Sirt1/PGC-1α pathway and Psn/arm pathway.


Subject(s)
Longevity , Muscle, Skeletal , Physical Conditioning, Animal , Signal Transduction , Animals , Aging/physiology , Aging/genetics , Aging/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Healthy Aging/genetics , Healthy Aging/metabolism , Healthy Aging/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
5.
Life (Basel) ; 14(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38792612

ABSTRACT

Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies.

6.
Article in English | MEDLINE | ID: mdl-38713298

ABSTRACT

PURPOSE: The unsatisfactory efficacy of PD-L1 antibodies in glioblastoma (GBM) is largely due to the temporal and spatial heterogeneity of PD-L1 expression. Molecular imaging can enhance understanding of the tumor immune microenvironment and guide immunotherapy. However, highly sensitive imaging agents capable of effectively visualizing PD-L1 heterogeneity are limited. This study introduces a novel PET tracer, offering improved imaging of PD-L1 heterogeneity in GBM xenografts, with a comparative analysis to [18F]AlF-NOTA-WL12. METHODS: [18F]AlF-NOTA-PCP2 was synthesized with high purity and its affinity for PD-L1 was characterized using surface plasmon resonance (SPR) and cell binding assays. Its specificity for PD-L1 was evaluated both in vitro using various cell lines and in vivo with GBM xenograft models in NOD/SCID mice. PET/CT imaging was conducted to evaluate the tracer's biodistribution, pharmacokinetics, and ability to quantify tumoral spatial heterogeneity of PD-L1 expression. A focused comparative analysis between [18F]AlF-NOTA-PCP2 and [18F]AlF-NOTA-WL12 was conducted, examining binding affinity, biodistribution, pharmacokinetics, and imaging effectiveness in GBM xenografts. Additionally, human radiation dosimetry estimates compared the safety profiles of both tracers. RESULTS: [18F]AlF-NOTA-PCP2 demonstrated high radiochemical purity (> 95%) and a strong affinity for PD-L1, comparable to [18F]AlF-NOTA-WL12. In vitro and in vivo studies confirmed its specificity for PD-L1, with increased uptake in PD-L1 expressing cells and tumors. Toxicological profiles indicated no significant abnormalities in serum biochemical indicators or major organ tissues. MicroPET/CT imaging showed [18F]AlF-NOTA-PCP2's effectiveness in visualizing PD-L1 expression levels and spatial heterogeneity in GBM xenografts. Comparative studies revealed [18F]AlF-NOTA-PCP2's improved pharmacokinetic properties, including higher tumor-to-blood ratios and lower nonspecific liver uptake, as well as reduced radiation exposure compared to [18F]AlF-NOTA-WL12. CONCLUSION: [18F]AlF-NOTA-PCP2 distinguishes itself as an exceptionally sensitive PET/CT tracer, adept at non-invasively and accurately quantifying PD-L1 expression and its spatial heterogeneity in tumors, especially in GBM. Its favorable pharmacokinetic properties, safety profile, and high affinity for PD-L1 highlight its potential for enhancing the precision of cancer immunotherapy and guiding individualized treatment strategies. While promising, its clinical translation, especially in brain imaging, necessitates further validation in clinical trials.

7.
Sci Bull (Beijing) ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38811339

ABSTRACT

Historical documents provide evidence for regional droughts preceding the political turmoil and fall of Beijing in 1644 CE, when more than 20 million people died in northern China during the late Ming famine period. However, the role climate and environmental changes may have played in this pivotal event in Chinese history remains unclear. Here, we provide tree-ring evidence of persistent megadroughts from 1576 to 1593 CE and from 1624 to 1643 CE in northern China, which coincided with exceptionally cold summers just before the fall of Beijing. Our analysis reveals that these regional hydroclimatic extremes are part of a series of megadroughts along the Pacific Rim, which not only impacted the ecology and society of monsoonal northern China, but likely also exacerbated external geopolitical and economic pressures. This finding is corroborated by last millennium reanalysis data and numerical climate model simulations revealing internally driven Pacific sea surface temperature variations and the predominance of decadal scale La Niña-like conditions to be responsible for precipitation decreases over northern China, as well as extensive monsoon regions in the Americas. These teleconnection patterns provide a mechanistic explanation for reoccurring drought spells during the late Ming Dynasty and the environmental framework fostering the fall of Beijing in 1644 CE, and the subsequent demise of the Ming Dynasty.

8.
Environ Res ; 252(Pt 2): 118904, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38614203

ABSTRACT

CH4 serves as an important greenhouse gas, yet limited knowledge is available in global and regional CH4 cycling, particularly in widely distributed karst terrain. In this study, we investigated an upland in Puding Karst Ecosystem Research Station, and explored CH4 concentration and/or flux in atmosphere, soil and cave using a closed static chamber method and an eddy covariance system. Meanwhile, we monitored atmospheric temperature, precipitation, temperature and wind velocity in the cave entrance. The results demonstrated that atmospheric CH4 and actual soil CH4 fluxes in the source area of eddy covariance system were -0.19 ± 8.64 nmols-1m-2 and -0.16 nmols-1m-2 respectively. The CH4 concentrations in Shawan Cave exhibited 10 âˆ¼ 100-fold lower than that of the external atmosphere. CH4 oxidation rate dominated by methane-oxidizing bacteria was 1.98 nmols-1m-2 in Shawan Cave when it combined with temperature difference between cave and external atmosphere. Therefore, CH4 sink in global karst subterranean spaces was estimated at 106.2 Tg CH4 yr-1. We supplemented an understanding of CH4 cycling paths and fluxes in karst terrain, as well as CH4 sinks in karst subterranean space. Further works require to establish a karst ecosystem observation network to conduct long-term integrated studies on CH4 fluxes regarding atmosphere, soils, plants and caves.


Subject(s)
Atmosphere , Caves , Methane , Soil , Methane/analysis , Methane/metabolism , Atmosphere/chemistry , Soil/chemistry , Environmental Monitoring/methods , Soil Microbiology , Air Pollutants/analysis
9.
Nano Lett ; 24(17): 5206-5213, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647212

ABSTRACT

Single Atoms Catalysts (SACs) have emerged as a class of highly promising heterogeneous catalysts, where the traditional bottom-up synthesis approaches often encounter considerable challenges in relation to aggregation issues and poor stability. Consequently, achieving densely dispersed atomic species in a reliable and efficient manner remains a key focus in the field. Herein, we report a new facile electrochemical knock-down strategy for the formation of SACs, whereby the metal Zn clusters are transformed into single atoms. While a defect-rich substrate plays a pivotal role in capturing and stabilizing isolated Zn atoms, the feasibility of this novel strategy is demonstrated through a comprehensive investigation, combining experimental and theoretical studies. Furthermore, when studied in exploring for potential applications, the material prepared shows a remarkable improvement of 58.21% for the Li+ storage and delivers a capacity over 300 Wh kg-1 after 500 cycles upon the transformation of Zn clusters into single atoms.

10.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668198

ABSTRACT

Two-dimensional (2D) ferromagnets have attracted significant interest for their potential in spintronic device miniaturization, especially since the discovery of ferromagnetic ordering in monolayer materials such as CrI3 and Fe3GeTe2 in 2017. This study presents a detailed investigation into the effects of the Hubbard U parameter, biaxial strain, and structural distortions on the magnetic characteristics of T″-phase VTe2. We demonstrate that setting the Hubbard U to 0 eV provides an accurate representation of the observed structural, magnetic, and electronic features for both bulk and monolayer T″-phase VTe2. The application of strain reveals two distinct ferromagnetic states in the monolayer T″-phase VTe2, each characterized by minor structural differences, but notably different magnetic moments. The T″-1 state, with reduced magnetic moments, emerges under compressive strain, while the T″-2 state, featuring increased magnetic moments, develops under tensile strain. Our analysis also compares the magnetic anisotropy between the T and T″ phases of VTe2, highlighting that the periodic lattice distortion in the T″-phase induces an in-plane anisotropy, which makes it a material with an easy-axis of magnetization. Monte Carlo simulations corroborate our findings, indicating a high Curie temperature of approximately 191 K for the T″-phase VTe2. Our research not only sheds light on the critical aspects of the VTe2 system but also suggests new pathways for enhancing low-dimensional magnetism, contributing to the advancement of spintronics and straintronics.

12.
Arch Virol ; 169(5): 88, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565755

ABSTRACT

Transcription of the covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is subject to dual regulation by host factors and viral proteins. MicroRNAs (miRNAs) can regulate the expression of target genes at the post-transcriptional level. Systematic investigation of miRNA expression in HBV infection and the interaction between HBV and miRNAs may deepen our understanding of the transcription mechanisms of HBV cccDNA, thereby providing opportunities for intervention. miRNA sequencing and real-time quantitative PCR (qRT-PCR) were used to analyze miRNA expression after HBV infection of cultured cells. Clinical samples were analyzed for miRNAs and HBV transcription-related indicators, using qRT-PCR, enzyme-linked immunoassay (ELISA), and Western blot. miRNA mimics or inhibitors were used to study their effects on the HBV life cycle. The target genes of miR-3188 and their roles in HBV cccDNA transcription were also identified. The expression of 10 miRNAs, including miR-3188, which was significantly decreased after HBV infection, was measured in clinical samples from patients with chronic HBV infection. Overexpression of miR-3188 inhibited HBV transcription, whereas inhibition of miR-3188 expression promoted HBV transcription. Further investigation confirmed that miR-3188 inhibited HBV transcription by targeting Bcl-2. miR-3188 is a key miRNA that regulates HBV transcription by targeting the host protein Bcl-2. This observation provides insights into the regulation of cccDNA transcription and suggests new targets for anti-HBV treatment.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , MicroRNAs , Humans , DNA, Circular/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B/genetics , Hepatitis B virus/genetics , Hepatitis B, Chronic/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Viral Transcription , Virus Replication/genetics
13.
Foods ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38540911

ABSTRACT

The impact of five human milk oligosaccharides (HMOs)-2'-fucosyllactose (2FL), 3'-sialyllactose (3SL), 6'-sialyllactose (6SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT)-on the gut microbiota and short-chain fatty acid (SCFA) metabolites in infants aged 0-6 months was assessed through in vitro fermentation. Analyses of the influence of different HMOs on the composition and distribution of infant gut microbiota and on SCFA levels were conducted using 16S rRNA sequencing, quantitative real-time PCR (qPCR), and gas chromatography (GC), respectively. The findings indicated the crucial role of the initial microbiota composition in shaping fermentation outcomes. Fermentation maintained the dominant genera species in the intestine but influenced their abundance and distribution. Most of the 10 Bifidobacteria strains effectively utilized HMOs or their degradation products, particularly demonstrating proficiency in utilizing 2FL and sialylated HMOs compared to non-fucosylated neutral HMOs. Moreover, our study using B. infantis-dominant strains and B. breve-dominant strains as inocula revealed varying acetic acid levels produced by Bifidobacteria upon HMO degradation. Specifically, the B. infantis-dominant strain yielded notably higher acetic acid levels than the B. breve-dominant strain (p = 0.000), with minimal propionic and butyric acid production observed at fermentation's conclusion. These findings suggest the potential utilization of HMOs in developing microbiota-targeted foods for infants.

14.
Water Res ; 255: 121491, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38520779

ABSTRACT

Pre-capturing organics in municipal wastewater for biogas production, combined with Anammox-based nitrogen removal process, improves the sustainability of sewage treatment. Thus, enhancing nitrogen removal via Anammox in mainstream wastewater treatment becomes very crucial. In present study, a three-stage anoxic/oxic (AO) biofilm process with intermittent aeration was designed to strengthen partial nitrification/denitrification coupling Anammox (PNA/PDA) in treatment of low C/N wastewater, which contained chemical oxygen demand (COD) of 79.8 mg/L and total inorganic nitrogen (TIN) of 58.9 mg/L. With a hydraulic retention time of 8.0 h, the process successfully reduced TIN to 10.6 mg/L, achieving a nitrogen removal efficiency of 83.3 %. The 1st anoxic zone accounted for 32.0 % TIN removal, with 10.3 % by denitrification and 21.7 % by PDA, meanwhile, the 2nd and 3rd anoxic zones contributed 19.4 % and 4.5 % of TIN removal, primarily achieved through PDA (including endogenous PD coupling Anammox). The 1st and 2nd intermittent zones accounted for 27.2 % and 17.0 % of TIN removal, respectively, with 13.7 %-21.3 % by PNA and 3.2 %-5.3 % by PDA. Although this process did not pursue nitrite accumulation in any zone (< 1.5 mg-N/L), PNA and PDA accounted for 35.1 % and 52.1 % of TIN removal, respectively. Only 0.21 % of removed TIN was released as nitrous oxide. The AnAOB of Candidatus Brocadia was enriched in each zone, with a relative abundance of 0.66 %-2.29 %. In intermittent zones, NOB had been partially suppressed (AOB/NOB = 0.73-0.88), mainly due to intermittent aeration and effective nitrite utilization by AnAOB since its population size was much greater than NOB. Present study indicated that the three-stage AO biofilm process with intermittent aeration could enhance nitrogen removal via PNA and PDA with a low N2O emission factor.

15.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38477656

ABSTRACT

The abuse of doxycycline (DC) can lead to residues in animals and water environments, which severely threaten human health; however, currently accepted detection methods are generally complicated and cannot be used for real-time detection. Therefore, developing a method for rapid real-time detection of DC microcontent residues is highly important. Herein, based on the Mach-Zehnder interference, we propose a simple tapered droplet structure fiber sensor with a high detection sensitivity. By modifying the sensing region with a molecularly imprinted polymer film of DC, this sensor realizes the specific detection of DC and has a detection sensitivity of 58.81 pm/ppm for DC in a large concentration range of 0-300 ppm. This sensor can be used to detect DC microcontent in aqueous solutions in real time.

16.
Breastfeed Med ; 19(3): 208-216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489527

ABSTRACT

Background: Lactoferrin (LF) is a multifunctional glycoprotein found in human milk and body fluids, which has been shown to play a vital role in regulating the immunity and supporting the intestinal health of infants. Aim: This study evaluated the association between maternal/parturient factors and LF concentration in the breast milk of Chinese mothers. Methods: 207 breast milk samples were collected from healthy mothers with in the first year of lactation. Maternal and parturient information was collected for these participants through questionnaires. The content of lactoferrin in breast milk was detected by liquid chromatography, and macronutrient concentration in breast milk was measured by human milk analyzer in only 109 samples. Results: Our findings demonstrated that the LF content was much higher within the first month of lactation than it was after that period (p < 0.05). When compared with normal and lean mothers, the LF content of obese mothers was considerably higher (p < 0.05). The parity and LF content showed a favorable correlation. The proportion of LF to total protein tended to decrease as lactation progressed. Protein, fat, dry matter, and energy content were significantly positively correlated with LF content (p < 0.001). Conclusion: Early breast milk tends to have a higher level of LF, and the change of LF concentration in breast milk is associated with the parity and body mass index of the mother.


Subject(s)
Lactoferrin , Milk, Human , Pregnancy , Infant , Female , Humans , Milk, Human/chemistry , Lactoferrin/analysis , Body Mass Index , Breast Feeding , Lactation/physiology , Parity
17.
Thorac Cancer ; 15(13): 1060-1071, 2024 May.
Article in English | MEDLINE | ID: mdl-38532562

ABSTRACT

BACKGROUND: The aim of the study was to evaluate the prognostic value of postoperative folate receptor-positive circulating tumor cell (FR + CTC) detection in patients with stage I-III invasive adenocarcinoma (IAC) treated with surgery. METHODS: Patients with lung adenocarcinoma (LUAD) who underwent surgical resection in Peking University Cancer Hospital and received postoperative FR + CTC analysis from July 2016 to January 2021 were retrospectively collected. Comparisons between or among groups were made using the Kruskal-Wallis or Mann-Whitney U tests. Survival curves were estimated using the Kaplan-Meier method and compared using the log-rank test. Cox proportional hazard regression analyses were performed to explore the factors predicting recurrence and survival. RESULTS: There were significant differences between the high and low groups in terms of age (p = 0.002), postoperative CA199 (p = 0.038), and postoperative SCC (p = 0.024). There were no significant differences in the other indicators (all p>0.05). N stage 1, N stage 2, and neoadjuvant therapy (NAT) were independent risk factors for disease recurrence and death; pleural invasion (PI), and nerve invasion were independent risk factors for death. The Kaplan-Meier curve showed a notable trend for a worse disease-free survival (DFS) or overall survival (OS) for patients with high levels of FR + CTCs in our study, but none of these were statistically significant. CONCLUSION: The detection of FR + CTCs postoperatively was an independent predictor of recurrence in patients treated for stage I-III IAC. Standardized detection methods and optimal time points for assessment should be established in future studies.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Male , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prognosis , Middle Aged , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Aged , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Retrospective Studies , Biomarkers, Tumor/metabolism , Neoplasm Invasiveness , Adult , Clinical Relevance
19.
BMC Plant Biol ; 24(1): 127, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383299

ABSTRACT

BACKGROUND: Root system architecture (RSA) exhibits significant genetic variability and is closely associated with drought tolerance. However, the evaluation of drought-tolerant cotton cultivars based on RSA in the field conditions is still underexplored. RESULTS: So, this study conducted a comprehensive analysis of drought tolerance based on physiological and morphological traits (i.e., aboveground and RSA, and yield) within a rain-out shelter, with two water treatments: well-watered (75 ± 5% soil relative water content) and drought stress (50 ± 5% soil relative water content). The results showed that principal component analysis identified six principal components, including highlighting the importance of root traits and canopy parameters in influencing drought tolerance. Moreover, the systematic cluster analysis was used to classify 80 cultivars into 5 categories, including drought-tolerant cultivars, relatively drought-tolerant cultivars, intermediate cultivars, relatively drought-sensitive cultivars, and drought-sensitive cultivars. Further validation of the drought tolerance index showed that the yield drought tolerance index and biomass drought tolerance index of the drought-tolerant cultivars were 8.97 and 5.05 times higher than those of the drought-sensitive cultivars, respectively. CONCLUSIONS: The RSA of drought-tolerant cultivars was characterised by a significant increase in average length-all lateral roots, a significant decrease in average lateral root emergence angle and a moderate root/shoot ratio. In contrast, the drought-sensitive cultivars showed a significant decrease in average length-all lateral roots and a significant increase in both average lateral root emergence angle and root/shoot ratio. It is therefore more comprehensive and accurate to assess field crop drought tolerance by considering root performance.


Subject(s)
Droughts , Gossypium , Gossypium/genetics , Phenotype , Water , Soil
20.
J Leukoc Biol ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393298

ABSTRACT

The progression of acute myeloid leukaemia (AML) is influenced by the immune microenvironment in the bone marrow and dysregulated intracellular competing endogenous RNA (ceRNA) networks. Our study utilized data from UCSC Xena, Cancer Genome Atlas Program, Gene Expression Omnibus, Immunology Database and Analysis Portal. Using Cox regression analysis, we identified an immune-related prognostic signature. Genomic analysis of prognostic mRNA was conducted through Gene Set Cancer Analysis (GSCA), and a prognostic ceRNA network was constructed using the Encyclopedia of RNA Interactomes. Correlations between signature mRNAs and immune cell infiltration, checkpoints, and drug sensitivity were assessed using R software, GEPIA, and CellMiner, respectively. Adhering to the ceRNA hypothesis, we established a potential lncRNA/miRNA/mRNA regulatory axis. Our findings pinpointed nine immune-related prognostic mRNAs (KIR2DL1, CSRP1, APOBEC3G, CKLF, PLXNC1, PNOC, ANGPT1, IL1R2, and IL3RA). GSCA analysis revealed the impact of copy number variations and methylation on AML. The ceRNA network comprised 14 differentially expressed prognostic lncRNAs (DE-lncRNAs), six prognostic DE-miRNAs, and three prognostic immune-related IR-DEmRNAs. Correlation analyses linked these mRNA's expression to 22 immune cell types, six immune checkpoints, and potential sensitivity to 27 antitumor drugs. Finally, we identified a potential LINC00963/hsa-miR-431-5p/CSRP1 axis. This study offers innovative insights for AML diagnosis and treatment through a novel immune-related signature and ceRNA axis. Identified novel biomarkers, including two mRNAs (CKLF, PNOC), one miRNA (hsa-miR-323a-3p), and ten lncRNAs (SNHG25, LINC01857, AL390728.6, AC127024.5, Z83843.1, AP002884.1, AC007038.1, AC112512, AC020659.1, AC005921.3) present promising candidates as potential targets for precision medicine, contributing to the ongoing advancements in the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...