Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 661: 124414, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960344

ABSTRACT

Bulleyaconitine A (BLA) is a promising candidate for treating rheumatoid arthritis (RA) with diverse pharmacological activities, including anti-inflammatory, analgesic and bone repair. Herein, the long-acting bulleyaconitine A microspheres (BLA-MS) were developed to treat RA comprehensively by forming drug reservoirs in joint cavities. The BLA-MS were prepared by emulsion/solvent evaporation method. The particle size and distribution were assessed by SEM. The crystalline state was investigated by DSC and PXRD. The drug loading (DL), encapsulation efficiency (EE) and cumulative release in vitro were determined by HPLC. The DL and EE were 23.93 ± 0.38 % and 95.73 ± 1.56 % respectively, and the cumulative release was up to 69 days with a stable release curve. The pharmacodynamic results in collagen induced arthritis (CIA) rats showed a noticeable reduction in paw thickness (5.66 ± 0.32 mm), and the decreasing expression level of PGE2, TNF-α and IL-6 which diminished the infiltration of inflammatory cells, thereby alleviating the progression of erosion and repairing the damaged bones (BV/TV (Bone Volume / Total Volume): 81.97 %, BS/BV (Bone Surface / Bone Volume): 6.08 mm-1). In conclusion, intra-articular injection of BLA-MS should have a promising application in the treatment of RA and may achieve clinical transformation in the future.

2.
Int J Nanomedicine ; 18: 7533-7541, 2023.
Article in English | MEDLINE | ID: mdl-38106449

ABSTRACT

Introduction: Photothermal therapy (PTT) has a significant potential for its application in precision tumour therapy. However, PTT-induced hyperthermia may damage healthy tissues and trigger the expression of heat shock proteins (HSPs), thereby compromising the long-term therapeutic efficacy of PTT. Methods: In this study, a biomimetic drug delivery system comprising CuP nanozymes as the inner core and platelet membrane (PM) as the outer shell was successfully developed for administering synergistic chemodynamic therapy and mild PTT. PM is encapsulated on CuP to form this biomimetic nanoparticle (PM-coated CuP nanoparticles, PC). PC possesses peroxidase (POD) activity, can facilitate the conversion of hydrogen peroxide into ·OH, thereby inhibiting the expression of HSPs. Results: Upon exposure to low-power laser irradiation (0.5 W/cm2, 1064 nm), PC can convert near-infrared II laser energy into heat energy, thereby enabling the administration of enhanced mild PTT. In vitro and in vivo experiments have demonstrated that this synergistic approach can induce over 90% tumour eradication with favourable biocompatibility. Discussion: PC exhibits high efficacy and biocompatibility, making it a promising candidate for future applications.


Subject(s)
Nanoparticles , Neoplasms , Humans , Polymers , Pyrroles , Phototherapy , Copper , Photothermal Therapy , Biomimetics , Temperature , Neoplasms/drug therapy , Cell Line, Tumor
3.
Sci Total Environ ; 905: 167314, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37742979

ABSTRACT

Indium tin oxide (ITO) is a semiconductor nanomaterial with broad application in liquid crystal displays, solar cells, and electrochemical immune sensors. It is worth noting that, with the gradual increase in worker exposure opportunities, the exposure risk in occupational production cannot be ignored. At present, the toxicity of ITO mainly focuses on respiratory toxicity. ITO inhaled through the upper respiratory tract can cause pathological changes such as interstitial pneumonia and pulmonary fibrosis. Still, extrapulmonary toxicity after nanoscale ITO nanoparticle (ITO NPs) exposure, such as long-term effects on the central nervous system, should also be of concern. Therefore, we set up exposure dose experiments (0 mg·kg-1, 3.6 mg·kg-1, and 36 mg·kg-1) based on occupational exposure limits to treat C57BL/6 mice via nasal drops for 15 weeks. Moreover, we conducted a preliminary assessment of the neurotoxicity of ITO NPs (20-30 nm) in vivo. The results indicated that ITO NPs can cause diffuse inflammatory infiltrates in brain tissue, increased glial cell responsiveness, abnormal neuronal cell lineage transition, neuronal migration disorders, and neuronal apoptosis related to the oxidative stress induced by ITO NPs exposure. Hence, our findings provide useful information for the fuller risk assessment of ITO NPs after occupational exposure.


Subject(s)
Nanoparticles , Trauma, Nervous System , Mice , Animals , Mice, Inbred C57BL , Tin Compounds/toxicity , Nanoparticles/toxicity , Brain , Indium
4.
Front Bioeng Biotechnol ; 11: 1225937, 2023.
Article in English | MEDLINE | ID: mdl-37485315

ABSTRACT

Introduction: Radiotherapy (RT) is one of the key methods for treating breast cancer. However, the effect of single RT is often poor because of insufficient deposition of X-rays in tumor sites and radiation resistance induced by the abnormal tumor microenvironment (overexpression of glutathione (GSH)). The development of multifunctional RT sensitizers and synergetic therapeutic strategies is, therefore, a promising area for enhancing the anticancer effect of RT. Methods: In this study, a multifunctional nanozyme hydrogel based on Cu-doped polypyrrole (CuP) was designed to work concertedly with a second near-infrared thermal RT. The CuP-based hydrogel (CH) reached the tumor site when injected in-situ and achieved long-term storage. Results: Once stimulated with 1064-nm laser irradiation, the heated and softened hydrogel system released CuP nanozyme to provide photothermal therapy, thereby inhibiting the repair of DNA damage caused by RT. In addition, CuP with dual nanozyme activity depleted the intracellular GSH to reduce the antioxidant capacity of the tumor. Moreover, CuP converted H2O2 to produce ·OH to directly kill the tumor cells, thus enhancing the capability of low-dose RT to inhibit tumor growth. In vivo experiments showed that the CH system used in combination with a low-power 1064-nm laser and low-dose RT (4 Gy) exhibited good synergistic anticancer effects and biological safety. Discussion: As a new light-responsive hydrogel system, CH holds immense potential for radio-sensitization.

5.
Biomed J ; 46(5): 100580, 2023 10.
Article in English | MEDLINE | ID: mdl-36758943

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic, life-threatening inflammatory disease of gastrointestinal tissue characterized by inflammation of the gut. Recent studies have shown that gut microbiota is involved in the pathophysiology of IBD. However, it is unknown whether direct inhibition of NLR family pyrin domain containing 3 (NLRP3) inflammasome regulates IBD and alters gut microbiota. METHODS: Here, the NLRP3 expression was evaluated in the colon of IBD subjects. Then, we investigated the effects of NLRP3 inhibition by MCC950 on the gut microbiota and IBD-like symptoms induced by dextran sulfate sodium (DSS). RESULTS: Firstly, NLRP3 and IL-1ß levels were increased in patients with IBD as compared with healthy individuals. Then, the animal experiment showed that NLRP3 inhibition by MCC950 significantly attenuated IBD-like symptoms such as diarrhea and colonic inflammation in DSS-induced mice. In addition, NLRP3 inhibition inhibited NLRP3/ASC/caspase-1/IL-1ß signaling pathway in the colon, which was over-activated by DSS. Furthermore, MCC950 increased the abundance of phylum Firmicutes, decreased the abundance of phylum Bacteroidetes, and increased the Firmicutes/Bacteroidetes ratio, indicating that the inhibition of NLRP3 inflammasome could regulate the abundance of intestinal flora. According to correlation analysis, NLRP3 might produce its functional role in the regulation of oxidation indicators by changing the gut microbiota composition, especially the phylum Bacteroidota, genus Lactobacillus and species Lactobacillus reuteri. CONCLUSIONS: This study suggests that NLRP3 inflammasome inhibition attenuates IBD-like symptoms by regulating gut microbiota, and provides a basis for the clinical application of NLRP3 as a target for the treatment of IBD.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Mice , Colitis/chemically induced , Colitis/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein , Dextran Sulfate/adverse effects , Inflammasomes , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Inflammation , Disease Models, Animal
6.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36768966

ABSTRACT

Liposomes, the most widely studied nano-drug carriers in drug delivery, are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Compared with traditional drug delivery systems, liposomes exhibit prominent properties that include targeted delivery, high biocompatibility, biodegradability, easy functionalization, low toxicity, improvements in the sustained release of the drug it carries and improved therapeutic indices. In the wake of the rapid development of nanotechnology, the studies of liposome composition have become increasingly extensive. The molecular diversity of liposome composition, which includes long-circulating PEGylated liposomes, ligand-functionalized liposomes, stimuli-responsive liposomes, and advanced cell membrane-coated biomimetic nanocarriers, endows their drug delivery with unique physiological functions. This review describes the composition, types and preparation methods of liposomes, and discusses their targeting strategies in cancer therapy.


Subject(s)
Liposomes , Neoplasms , Humans , Liposomes/therapeutic use , Drug Delivery Systems , Neoplasms/drug therapy , Drug Carriers/therapeutic use , Nanotechnology/methods
7.
J Appl Toxicol ; 43(1): 146-166, 2023 01.
Article in English | MEDLINE | ID: mdl-35929397

ABSTRACT

The purpose of this paper is to explore the current research status, hot topics, and future prospects in the field of graphene and its derivatives toxicity. In the article, the Web of Science Core Collection database was used as the data source, and the CiteSpace and VOSviewer were used to conduct a visual analysis of the last 10 years of research on graphene and its derivatives toxicity. A total of 8573 articles were included, and we analyzed the literature characteristics of the research results in the field of graphene and its derivatives toxicity, as well as the distribution of authors and co-cited authors; the distribution of countries and institutions; the situation of co-cited references; and the distribution of journals and categories. The most prolific countries, institutions, journals, and authors are China, the Chinese Academy of Sciences, RSC Advances, and Wang, Dayong, respectively. The co-cited author with the most citations was Akhavan, Omid. The five research hotspot keywords in the field of graphene and its derivatives toxicity were "nanomaterials," "exposure," "biocompatibility," "adsorption," and "detection." Frontier topics were "facile synthesis," "antibacterial activity," and "carbon dots." Our study provides perspectives for the study of graphene and its derivatives toxicity and yields valuable information and suggestions for the development of graphene and its derivatives toxicity research in the future.


Subject(s)
Graphite , Nanostructures , Graphite/toxicity , Bibliometrics , Adsorption , Databases, Factual
8.
Front Public Health ; 10: 929407, 2022.
Article in English | MEDLINE | ID: mdl-36203693

ABSTRACT

Introduction: There is an urgent need to address vaccine hesitancy to achieve booster vaccination. This study aimed to reveal the factors associated with vaccine hesitancy (including COVID-19 vaccine) among Chinese residents, address modifications of the factors since the previous year, and propose vaccination rate improvement measures. Materials and methods: This qualitative return visit study was performed between January and mid-February 2022, following the last interview conducted between February and March 2021. According to an outline designed in advance, 60 Chinese residents from 12 provinces participated in semi-structured interviews. Results: Vaccine safety was the biggest concern raised by respondents, followed by self-immunity and vaccine effectiveness, eliciting concern since the interview last year. Notably, online media accounted for a more significant portion of suggestion sources than before, and fear of pain was a novel factor affecting vaccine hesitancy. Moreover, unlike other areas, those from provinces with a per capita gross domestic product of 3-5 (RMB 10,000) reported less concern about vaccine price and effectiveness. They tended to seek advice via online media less and were greatly influenced by vaccination policies. Conclusions: Influential factors of vaccine hesitancy among Chinese residents are changing dynamically. Monitoring these trends is essential for public health measures and higher vaccination levels.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , China , Health Knowledge, Attitudes, Practice , Humans , Patient Acceptance of Health Care , Vaccination Hesitancy
9.
Cell Biosci ; 12(1): 90, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35715851

ABSTRACT

BACKGROUND: Major depressive disorder is characterized by not only monoamine neurotransmitters deficiencies but also persistent neuroinflammation. The complement system is an attractive therapeutic target for various inflammation-related diseases due to its early activation in inflammatory processes. RESULTS: In the present study, the dynamic alteration of complement C3 and its receptor C3aR during the occurrence of depression and the mechanism of astrocyte-microglia IL-1R/C3/C3aR on synaptic pruning were investigated. The proteomic analysis firstly showed that chronic stress caused an elevation of C3. GO analysis indicated that complement system-mediated synaptic pruning signaling was involved in depression. The dynamic observation indicated that C3/C3aR was activated in the early onset and throughout the course of depression induced by lipopolysaccharide (LPS) and chronic stress. In contrast, C3aR blockade inhibited the hyperactivation of microglial APT2/DHHC7 palmitoylation cycle, which mediated the translocation of STAT3 and the expression of proinflammatory cytokines. Meanwhile, C3aR blockade also attenuated the synaptic pruning and enhanced the synaptogenesis in the prefrontal cortex of mice. Moreover, the blockade of IL-1R/NF-κB signaling pathway reduced the release of C3 from astrocyte. CONCLUSIONS: The current study demonstrates that astrocyte-microglia IL-1R/C3/C3aR activation causes the abnormal synaptic pruning in depression, and suggests that the activation of complement C3/C3aR may be particularly helpful in predicting the onset stage of depression.

10.
J Neuroimmune Pharmacol ; 17(3-4): 503-514, 2022 12.
Article in English | MEDLINE | ID: mdl-34978026

ABSTRACT

Major depressive disorder is characterized by the deficiencies of monoamine neurotransmitters, neurotrophic factors and persistent neuroinflammation. Microglial activation has been associated with neuroinflammation-related mental diseases, accompanied by NLR family pyrin domain containing 3 (NLRP3) inflammasome. Here, we investigated the effect of NLRP3 inhibition by its small molecular inhibitor MCC950 on inflammatory activity and depressive-like mice induced by chronic unpredictable mild stress (CUMS), followed by the behavioral tests including sucrose preference test and forced swimming test. NLRP3/caspase-1/IL-1ß signaling and microglial morphology in the prefrontal cortex were measured. The results showed that CUMS caused a decrease in sucrose preference and an increase in immobility time, which were reversed by NLRP3 inhibitor MCC950. In addition, NLRP3 inhibition decreased the number of microglia and changed the activated state of microglia to a resting state by morphology 3D reconstruction. Moreover, NLRP3 inhibition inactivated NLRP3/caspase-1/IL-1ß signaling in the prefrontal cortex. The results from immunofluorescence demonstrated that NLRP3 and IL-1ß expression was decreased in microglia in response to MCC950 treatment. Accordingly, proinflammatory cytokines were also decreased by NLRP3 inhibition. In conclusion, this study demonstrates that microglial NLRP3 inhibition prevents stress-induced neuroinflammation in the prefrontal cortex and suggests that microglial NLRP3 could be one of the potential therapeutic targets for depression treatment.


Subject(s)
Depressive Disorder, Major , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Caspase 1/metabolism , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfonamides/pharmacology , Stress, Psychological
11.
Environ Pollut ; 290: 117993, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34428702

ABSTRACT

Indium tin oxide (ITO) is an important semiconductor material, because of increasing commercial products consumption and potentially exposed workers worldwide. So, urgently we need to assess and manage potential health risks of ITO. Although the Occupational Exposure Limit (OEL) has been established for ITO exposure, there is still a lack of distinguishing the risks of exposure to particles of different sizes. Therefore, obtaining toxicological data of small-sized particles will help to improve its risk assessment data. Important questions raised in quantitative risk assessments for ITO particles are whether biodistribution of ITO particles is affected by particle size and to what extent systematic adverse responses is subsequently initiated. In order to determine whether this toxicological paradigm for size is relevant in ITO toxic effect, we performed comparative studies on the toxicokinetics and sub-acute toxicity test of ITO in mice. The results indicate both sized-ITO resided in the lung tissue and slowly excreted from the mice, and the smaller size of ITO being cleared more slowly. Only a little ITO was transferred to other organs, especially with higher blood flow. Two type of ITO which deposit in the lung mainly impacts respiratory system and may injure liver or kidney. After sub-acute exposure to ITO, inflammation featured by neutrophils infiltration and fibrosis with both dose and size effects have been observed. Our findings revealed toxicokinetics and dose-dependent pulmonary toxicity in mice via oropharyngeal aspiration exposure, also replenish in vivo risk assessment of ITO. Collectively, these data indicate that under the current OEL, there are potential toxic effects after exposure to the ITO particles. The observed size-dependent biodistribution patterns and toxic effect might be important for approaching the hazard potential of small-sized ITO in an occupational environment.


Subject(s)
Tin Compounds , Animals , Mice , Particle Size , Tin Compounds/toxicity , Tissue Distribution , Toxicokinetics
12.
Sci Total Environ ; 772: 145475, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33770885

ABSTRACT

Electronic cigarettes (E-cigarette) are an alternative for traditional cigarette smokers to quit smoking. Based on the current understanding, electronic cigarettes have rapidly become popular among existing smokers and former non-smokers. However, increasing research at different levels reveals that e-cigarettes are unsafe. This review provides an overview of the toxicology of e-cigarettes based on existing in vivo and in vitro studies and compares their toxicity with that of traditional cigarettes. Moreover, we describe the associated toxicity components in e-cigarettes, as well as the potential mechanism by which e-cigarettes exert toxic effects. As is known to all, the nicotine in traditional cigarettes and e-cigarettes has certain toxicity. Besides, a few studies have shown that propylene glycol and vegetable glycerin mixture and flavoring agents in e-cigarettes also are the key components causing adverse effects in animals or cells. There is insufficient scientific evidence on the toxicity of e-cigarettes due to the lack of standardized research methods, prompting the need to conduct a comprehensive toxicity assessment of e-cigarette toxicity to elucidate the safety issues of e-cigarettes. Eventually, a basis for decision-making on whether people use e-cigarettes will be obtained.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Animals , Glycerol , Nicotine/toxicity , Smoking
SELECTION OF CITATIONS
SEARCH DETAIL
...