Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 10(33): eado4639, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39141737

ABSTRACT

Magnetic reconnection, the rearrangement of magnetic field topologies, is a fundamental plasma process throughout the universe, which converts magnetic energy to plasma kinetic energy and results in particle energization. A current sheet is a prerequisite for the occurrence of magnetic reconnection. It has been well documented that reconnecting current sheets are prevalent in turbulent plasmas. However, how these current sheets are formed remains unclear. Among natural plasmas, the region downstream of the Earth's bow shock, the magnetosheath, is one of the most turbulent. Here, we show that the reconnecting current sheets in the turbulent magnetosheath originate from the waves in the region upstream of the shock. Once excited, the upstream waves are transmitted across the shock, compressed, and then transformed into current sheets in the downstream region. Magnetic reconnection subsequently occurs in these downstream current sheets. This process can be generalized to various shocked plasmas in astrophysical and laboratorial environments where turbulent magnetic reconnection should be common.

2.
Nat Commun ; 11(1): 3964, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32769991

ABSTRACT

Magnetic reconnection is a fundamental plasma process, by which magnetic energy is explosively released in the current sheet to energize charged particles and to create bi-directional Alfvénic plasma jets. Numerical simulations predicted that evolution of the reconnecting current sheet is dominated by formation and interaction of magnetic flux ropes, which finally leads to turbulence. Accordingly, most volume of the reconnecting current sheet is occupied by the ropes, and energy dissipation occurs via multiple relevant mechanisms, e.g., the parallel electric field, the rope coalescence and the rope contraction. As an essential element of the reconnecting current sheet, however, how these ropes evolve has been elusive. Here, we present direct evidence of secondary reconnection in the filamentary currents within the ropes. The observations indicate that secondary reconnection can make a significant contribution to energy conversion in the kinetic scale during turbulent reconnection.

SELECTION OF CITATIONS
SEARCH DETAIL