Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Transl Med ; 22(1): 554, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858785

ABSTRACT

BACKGROUND: The molecular complexity of colorectal cancer poses a significant challenge to the clinical implementation of accurate risk stratification. There is still an urgent need to find better biomarkers to enhance established risk stratification and guide risk-adapted treatment decisions. METHODS: we systematically analyzed cancer dependencies of 17 colorectal cancer cells and 513 other cancer cells based on genome-scale CRISPR-Cas9 knockout screens to identify colorectal cancer-specific fitness genes. A regression model was built using colorectal cancer-specific fitness genes, which was validated in other three independent cohorts. 30 published gene expression signatures were also retrieved. FINDINGS: We defined a total of 1828 genes that were colorectal cancer-specific fitness genes and identified a 22 colorectal cancer-specific fitness gene (CFG22) score. A high CFG22 score represented unfavorable recurrence and mortality rates, which was validated in three independent cohorts. Combined with age, and TNM stage, the CFG22 model can provide guidance for the prognosis of colorectal cancer patients. Analysis of genomic abnormalities and infiltrating immune cells in the CFG22 risk stratification revealed molecular pathological difference between the subgroups. Besides, drug analysis found that CFG22 high patients were more sensitive to clofibrate. INTERPRETATION: The CFG22 model provided a powerful auxiliary prediction tool for identifying colorectal cancer patients with high recurrence risk and poor prognosis, optimizing precise treatment and improving clinical efficacy.


Subject(s)
CRISPR-Cas Systems , Colorectal Neoplasms , Gene Knockout Techniques , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnosis , Humans , CRISPR-Cas Systems/genetics , Risk Assessment , Cell Line, Tumor , Prognosis , Male , Genetic Fitness , Female , Genome, Human , Gene Expression Regulation, Neoplastic
2.
Gene ; 885: 147715, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37591325

ABSTRACT

Nitrogen (N) is the key essential macronutrient for crop growth and yield. Over-application of inorganic N fertilizer in fields generated serious environmental pollution and had a negative impact to human health. Therefore, improving crop N use efficiency (NUE) is helpful for sustainable agriculture. The biological functions of nitrogen transporters and regulators have been intensively studied in many crop species. However, only a few nitrogen transporters have been identified in tobacco to date. We reported the identification and functional characterization of a nitrate transporter NtNPF2.11 from tobacco (Nicotiana tabacum). qRT-PCR assay revealed that NtNPF2.11 was mainly expressed in leaf and vein. Under middle N (MN, 1.57 kg N/100 m2) and high N (HN, 2.02 kg N/100 m2) conditions, overexpression of NtNPF2.11 in tobacco greatly improved N utilization and biomass. Moreover, under middle N and high N conditions, the expression of genes for nitrate assimilation, such as NtNR1, NtNiR, NtGS and NtGOGAT, were upregulated in NtNPF2.11 overexpression plants. Compared with WT, overexpression of NtNPF2.11 increased potassium (K) accumulation under high N conditions. These results indicated that overexpression of NtNPF2.11 could increase tobacco yield, N and K accumulation under higher N conditions. Overall, these findings improve our understanding the function of NtNPF2.11 and provide useful gene for sustainable agriculture.


Subject(s)
Nicotiana , Nitrate Transporters , Humans , Nicotiana/genetics , Agriculture , Biomass , Membrane Transport Proteins/genetics , Nitrogen
3.
Front Plant Sci ; 14: 1205683, 2023.
Article in English | MEDLINE | ID: mdl-37575947

ABSTRACT

Introduction: Nicotiana L. (Solanaceae) is of great scientific and economic importance, and polyploidization has been pivotal in shaping this genus. Despite many previous studies on the Nicotiana phylogenetic relationship and hybridization, evidence from whole genome data is still lacking. Methods: In this study, we obtained 995 low-copy genes and plastid transcript fragments from the transcriptome datasets of 26 Nicotiana species, including all sections. We reconstructed the phylogenetic relationship and phylogenetic network of diploid species. Results: The incongruence among gene trees showed that the formation of N. sylvestris involved incomplete lineage sorting. The nuclear-plastid discordance and nuclear introgression absence indicated that organelle capture from section Trigonophyllae was involved in forming section Petunioides. Furthermore, we analyzed the evolutionary origin of polyploid species and dated the time of hybridization events based on the analysis of PhyloNet, sequence similarity search, and phylogeny of subgenome approaches. Our results highly evidenced the hybrid origins of five polyploid sections, including sections Nicotiana, Repandae, Rusticae, Polydicliae, and Suaveolentes. Notably, we provide novel insights into the hybridization event of section Polydicliae and Suaveolentes. The section Polydicliae formed from a single hybridization event between maternal progenitor N. attenuata and paternal progenitor N. undulata; the N. sylvestris (paternal progenitor) and the N. glauca (maternal progenitor) were involved in the formation of section Suaveolentes. Discussion: This study represents the first exploration of Nicotiana polyploidization events and phylogenetic relationships using the high-throughput RNA-seq approach. It will provide guidance for further studies in molecular systematics, population genetics, and ecological adaption studies in Nicotiana and other related species.

4.
Heliyon ; 9(5): e15897, 2023 May.
Article in English | MEDLINE | ID: mdl-37215925

ABSTRACT

Background: Bladder urothelial carcinoma (BLCA) is the second prevalent genitourinary carcinoma globally. N7-methylguanosine (m7G) is important for tumorigenesis and progression. This study aimed to build a predictive model for m7G-related long non-coding RNAs (lncRNAs), elucidate their role in the tumor immune microenvironment (TIME), and predict immunotherapy response in BLCA. Methods: We first used univariate Cox regression and coexpression analyses to identify m7G-related lncRNAs. Next, the prognostic model was built by utilizing LASSO regression analysis. Then, the prognostic significance of the model was examined utilizing Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, nomogram, and univariate, multivariate Cox regression. We also analyzed Gene set enrichment analyses (GSEA), immune analysis and principal component analysis (PCA) in risk groups. To further predict immunotherapy effectiveness, we evaluated the predictive ability for immunotherapy in 2 risk groups and clusters using tumor immune dysfunction and exclusion (TIDE) score and Immunophenoscore (IPS). Results: Seven lncRNAs related to m7G were used to create a model. The calibration plots for the model suggested a strong fit with the prediction of overall survival (OS). The area under the curve (AUC) for first, second, and third years was respectively, 0.722, 0.711, and 0.686. In addition, the risk score had strong correlation with TIME features and genes linked to immune checkpoint blockade (ICB). TIDE scores were dramatically different between two risk groups (p < 0.05), and IPS scores were markedly different between two clusters (p < 0.05). Conclusion: Our research constructed a novel m7G-related lncRNAs that could be used to predict patient outcomes and the effectiveness of immunotherapy in BLCA. Immunotherapy may be more effective for the low-risk group and cluster 2.

5.
World J Clin Cases ; 11(1): 57-64, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36687186

ABSTRACT

This article reviews the research progress of rehabilitation treatment and nursing care of patients with neurogenic bladder after spinal cord injury, in order to provide reference for the rehabilitation treatment and nursing care of patients. We reviewed recent medical literature on patients with neurogenic bladder, focusing on neurogenic bladder caused by spinal cord injury. We analyzed 30 recent of publications in patients with neurogenic bladder after spinal cord injury, in addition to reviewing and evaluating the commonly used rehabilitation nursing methods for neurogenic bladder. Psychological counseling is a vital aspect which cannot be neglected in the process of neurogenic bladder rehabilitation. Hitherto, the commonly used drug and surgical treatments may have negatively impacted the mental health of patients in varying degrees. However, in clinical practice, applying intermittent catheterization in patients who have neurogenic bladder with spinal cord injury may help improve patients' life quality, mitigate psychological burden, and reduce negative emotions.

6.
Prostate ; 83(1): 97-108, 2023 01.
Article in English | MEDLINE | ID: mdl-36164668

ABSTRACT

BACKGROUND: The PI3K/AKT/mTOR signaling pathway is essential for initiation and progression of prostate cancer. However, there has been no a comprehensive comparison for the role of these signaling nodes in prostate tumor initiation and progression. METHODS: With genetically engineered animal models, we compared the impact of prostate-specific deletions of Pten, Tsc1, and Tsc2 and activation of Akt1 on tumor initiation and progression. Also, we assessed the expression and genetic alterations of PTEN, AKT1, TSC1, and TSC2 in human primary prostate cancers. RESULTS: For the genetically engineered mice, prostate conditional knockout (cKO) of Pten, Tsc1, and Tsc2 led to initiation and progression of mouse prostatic neoplasia hyperplasia (mPIN). Akt1 transgenic mice developed more aggressive mPINs than mice with Tsc1 or Tsc2 single-cKO, but the effect was more moderate than that for Pten single-cKO or Tsc1/Tsc2 double-cKO mice. Functional analyses showed that Pten single-cKO, AKT1 activation, and Tsc1/Tsc2 double-cKO induced cell proliferation more than Tsc1 or Tsc2 single-cKO, but only Pten single-cKO and AKT1 activation reduced epithelial adhesion. All cKO or AKT1 activation enhanced the phosphorylation of p-S6 (S235/236) but only Pten single-cKO and Tsc1/Tsc2 double-cKO enhanced the phosphorylation of p-AKT (S473) and p-4EBP1 (T37/46/70). In human prostate cancers, PTEN, but not AKT1, TSC1, or TSC2 had frequent genetic alterations. However, as key signaling nodes, AKT1, TSC1, and TSC2 may be responsible for PTEN loss-mediated tumor initiation and progression. CONCLUSION: Our results for genetically engineered mouse models suggest a differential role of the PI3K/AKT/mTOR signaling nodes in prostate cancer initiation and progression, but the underlying molecular mechanisms remain unaddressed.


Subject(s)
Phosphatidylinositol 3-Kinases , Prostatic Neoplasms , Male , Humans , Mice , Animals , Mutation , Signal Transduction , Prostatic Neoplasms/genetics , Models, Animal , TOR Serine-Threonine Kinases
7.
Front Plant Sci ; 13: 927844, 2022.
Article in English | MEDLINE | ID: mdl-36176688

ABSTRACT

Amino acids are vital nitrogen (N) sources for plant growth, development, and yield. The uptake and translocation of amino acids are mediated by amino acid transporters (AATs). The AATs family including lysine-histidine transporters (LHTs), amino acid permeases (AAPs), and proline transporters (ProTs) subfamilies have been identified in various plants. However, little is known about these genes in tobacco. In this study, we identified 23 LHT genes, the important members of AATs, in the tobacco genome. The gene structure, phylogenetic tree, transmembrane helices, chromosomal distribution, cis-regulatory elements, and expression profiles of NtLHT genes were systematically analyzed. Phylogenetic analysis divided the 23 NtLHT genes into two conserved subgroups. Expression profiles confirmed that the NtLHT genes were differentially expressed in various tissues, indicating their potential roles in tobacco growth and development. Cis-elements analysis of promoters and expression patterns after stress treatments suggested that NtLHT genes probable participate in abiotic stress responses of tobacco. In addition, Knock out and overexpression of NtLHT22 changed the amino acids homeostasis in the transgenic plants, the contents of amino acids were significantly decreased in NtLHT22 overexpression plants than wild-type. The results from this study provide important information for further studies on the molecular functions of the NtLHT genes.

8.
Front Plant Sci ; 13: 899252, 2022.
Article in English | MEDLINE | ID: mdl-35865282

ABSTRACT

Nicotiana L. is a genus rich in polyploidy, which represents an ideal natural system for investigating speciation, biodiversity, and phytogeography. Despite a wealth of phylogenetic work on this genus, a robust evolutionary framework with a dated molecular phylogeny for the genus is still lacking. In this study, the 19 complete chloroplast genomes of Nicotiana species were assembled, and five published chloroplast genomes of Nicotiana were retrieved for comparative analyses. The results showed that the 24 chloroplast genomes of Nicotiana, ranging from 155,327 bp (N. paniculata) to 156,142 bp (N. heterantha) in size, exhibited typical quadripartite structure. The chloroplast genomes were rather conserved in genome structure, GC content, RNA editing sites, and gene content and order. The higher GC content observed in the IR regions could be a result of the presence of abundant rRNA and tRNA genes, which contained a relatively higher GC content. A total of seven hypervariable regions, as new molecular markers for phylogenetic analysis, were uncovered. Based on 78 protein-coding genes, we constructed a well-supported phylogenetic tree, which was largely in agreement with previous studies, except for a slight conflict in several sections. Chloroplast phylogenetic results indicated that the progenitors of diploid N. sylvestris, N. knightiana, and the common ancestor of N. sylvestris and N. glauca might have donated the maternal genomes of allopolyploid N. tabacum, N. rustica, and section Repandae, respectively. Meanwhile, the diploid section Noctiflorae lineages (N. glauca) acted as the most likely maternal progenitor of section Suaveolentes. Molecular dating results show that the polyploid events range considerably in ~0.12 million (section Nicotiana) to ~5.77 million (section Repandae) years ago. The younger polyploids (N. tabacum and N. rustica) were estimated to have arisen ~0.120 and ~0.186 Mya, respectively. The older polyploids (section Repandae and Suaveolentes) were considered to have originated from a single polyploid event at ~5.77 and ~4.49 Mya, respectively. In summary, the comparative analysis of chloroplast genomes of Nicotiana species has not only revealed a series of new insights into the genetic variation and phylogenetic relationships in Nicotiana but also provided rich genetic resources for speciation and biodiversity research in the future.

9.
Nat Commun ; 13(1): 2792, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589707

ABSTRACT

Human tubulin beta class IVa (TUBB4A) is a member of the ß-tubulin family. In most normal tissues, expression of TUBB4A is little to none, but it is highly expressed in human prostate cancer. Here we show that high expression levels of TUBB4A are associated with aggressive prostate cancers and poor patient survival, especially for African-American men. Additionally, in prostate cancer cells, TUBB4A knockout (KO) reduces cell growth and migration but induces DNA damage through increased γH2AX and 53BP1. Furthermore, during constricted cell migration, TUBB4A interacts with MYH9 to protect the nucleus, but either TUBB4A KO or MYH9 knockdown leads to severe DNA damage and reduces the NF-κB signaling response. Also, TUBB4A KO retards tumor growth and metastasis. Functional analysis reveals that TUBB4A/GSK3ß binds to the N-terminal of MYH9, and that TUBB4A KO reduces MYH9-mediated GSK3ß ubiquitination and degradation, leading to decreased activation of ß-catenin signaling and its relevant epithelial-mesenchymal transition. Likewise, prostate-specific deletion of Tubb4a reduces spontaneous tumor growth and metastasis via inhibition of NF-κB, cyclin D1, and c-MYC signaling activation. Our results suggest an oncogenic role of TUBB4A and provide a potentially actionable therapeutic target for prostate cancers with TUBB4A overexpression.


Subject(s)
Prostatic Neoplasms , beta Catenin , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Male , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , NF-kappa B/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Tubulin/metabolism , beta Catenin/genetics , beta Catenin/metabolism
10.
Oncogene ; 41(19): 2778-2785, 2022 05.
Article in English | MEDLINE | ID: mdl-35361883

ABSTRACT

In prostate cancers, elongation initiation factor 4A1 (eIF4A1) supports an oncogenic translation program and is highly expressed, but its role remains elusive. By the use of human specimens and cell models, we addressed the role of eIF4A1 in prostate cancer in vitro and in vivo. EIF4A1 expression, as determined by mRNA and protein levels, was higher in primary prostate cancers relative to normal prostate tissue. Also, for primary prostate cancers, elevated mRNA levels of EIF4A1 correlated with DNA hypomethylation levels in the CpG-rich island of EIF4A1. Using a DNMT3a CRISPR-Cas9-based tool for specific targeting of DNA methylation, we characterized, in human prostate cancer cells, the epigenetic regulation of EIF4A1 transcripts through DNA methylation in the CpG-rich island of EIF4A1. Next, we investigated the oncogenic effect of EIF4A1 on cancer cell proliferation in vitro and tumor growth in vivo. For prostate cancer cells, EIF4A1 heterozygous knockout or knockdown inhibited protein translation and tumor growth. In addition, using RNA immunoprecipitation with RNA sequencing, we discovered the eIF4A1-mediated translational regulation of the oncogene BRD2, which contains the most enriched eIF4A1-binding motifs in its 5' untranslated region, establishing an eIF4A1-BRD2 axis for oncogenic translation. Finally, we found a positive correlation between expression levels of eIF4A1 and BRD2 in primary prostate cancers. Our results demonstrate, for prostate cancer cells, epigenetic regulation of EIF4A1 transcripts through DNA methylation and an oncogenic role of eIF4A1 through BRD2 signaling.


Subject(s)
DNA Methylation , Eukaryotic Initiation Factor-4A/genetics , Prostatic Neoplasms , 5' Untranslated Regions , Carcinogenesis/genetics , CpG Islands , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Male , Oncogenes , Peptide Initiation Factors/genetics , Prostatic Neoplasms/genetics , RNA, Messenger/genetics , Transcription Factors/genetics
11.
Mol Cancer ; 21(1): 38, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35130925

ABSTRACT

BACKGROUND: Unlike autosomal tumor suppressors, X-linked tumor suppressors can be inactivated by a single hit due to X-chromosome inactivation (XCI). Here, we argue that targeted reactivation of the non-mutated allele from XCI offers a potential therapy for female breast cancers. METHODS: Towards this goal, we developed a dual CRISPR interference and activation (CRISPRi/a) approach for simultaneously silencing and reactivating multiple X-linked genes using two orthogonal, nuclease-deficient CRISPR/Cas9 (dCas9) proteins. RESULTS: Using Streptococcus pyogenes dCas9-KRAB for silencing XIST and Staphylococcus aureus dCas9-VPR for activating FOXP3, we achieved CRISPR activation of FOXP3 in various cell lines of human female breast cancers. In human breast cancer HCC202 cells, which express a synonymous heterozygous mutation in the coding region of FOXP3, simultaneous silencing of XIST from XCI led to enhanced and prolonged FOXP3 activation. Also, reactivation of endogenous FOXP3 in breast cancer cells by CRISPRi/a inhibited tumor growth in vitro and in vivo. We further optimized CRISPRa by fusing dCas9 to the demethylase TET1 and observed enhanced FOXP3 activation. Analysis of the conserved CpG-rich region of FOXP3 intron 1 confirmed that CRISPRi/a-mediated simultaneous FOXP3 activation and XIST silencing were accompanied by elevated H4 acetylation, including H4K5ac, H4K8ac, and H4K16ac, and H3K4me3 and lower DNA methylation. This indicates that CRISPRi/a targeting to XIST and FOXP3 loci alters their transcription and their nearby epigenetic modifications. CONCLUSIONS: The simultaneous activation and repression of the X-linked, endogenous FOXP3 and XIST from XCI offers a useful research tool and a potential therapeutic for female breast cancers.


Subject(s)
Breast Neoplasms , Genes, X-Linked , Breast Neoplasms/genetics , Cell Line , DNA Methylation , Female , Forkhead Transcription Factors/genetics , Humans , Mixed Function Oxygenases , Proto-Oncogene Proteins
12.
Sci Total Environ ; 823: 153598, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35114236

ABSTRACT

The current regulations of heavy-duty vehicles in China do not include the emissions in the cold start stage into the overall emission evaluation. However, the speed of heavy-duty diesel vehicles in the cold start stage is often low and the proportion of idle-conditions is large, resulting in the difference between the actual test results and evaluation results of emissions. Therefore, in order to accurately evaluate the impact of emission during cold start on the overall emission, in this study, the OBS-ONE portable vehicle emission test equipment was used to test the emission of three representative heavy-duty diesel vehicles with different types under actual road driving conditions, and the cumulative averaging (CA) method was adopted to calculate and analyze the test emission data. Firstly, the cold start emission of different types of heavy-duty vehicles was evaluated. The results show that the contribution rate of pollutant emission in the cold start stage is high, in which NOx emission accounts for 40-90% of the whole trip. It was unreasonable for regulations to exclude data in the cold start stage. The cold start duration of vehicle A is nearly 300 s longer than that of vehicle C, however, the NOx and PN emission factors of vehicle A are nearly 10 times and 100 times smaller than that of vehicle C at the cold start stage respectively. The cold start duration, fuel consumption and the emission factors in cold start stage of different types of heavy-duty diesel vehicles do not have a unified law. Secondly, the emission characteristics and differences of different types of heavy-duty vehicles are studied at the instantaneous level, and the internal mechanism causing the emission differences is explored and revealed. In the cold stage, CO2 emission shows a good correlation with the fuel consumption. CO, NOx emissions show a good correlation with the fuel consumption when the engine and post-treatment temperature are low, and CO and NOx emissions decrease with the increase of engine and post-treatment temperature. PN emissions are mainly related to the engine working state. Finally, the influence of dynamic parameters v·a and RPA on pollutant emission was analyzed. The results show that driving force is an important factor affecting CO2 emission, and RPA has no obvious correlation with emission at cold start stage.


Subject(s)
Air Pollutants , Environmental Pollutants , Air Pollutants/analysis , China , Gasoline/analysis , Motor Vehicles , Vehicle Emissions/analysis
13.
Plant Sci ; 315: 111154, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35067314

ABSTRACT

Phenylpropanoids are important secondary metabolites that have multifaceted effects on plant growth, development, and environmental adaptation. WRKY41 has been shown to repress anthocyanins synthesis in Arabidopsis, but its full roles in regulating plant phenylpropanoids metabolism still remains to be further studied. Here, we cloned two NtWRKY41 genes from N. tabacum genome, and NtWRKY41a showed higher expression levels than NtWRKY41b genes in all the tobacco tissues examined. Overexpression and knock-out of NtWRKY41a gene revealed that NtWRKY41a promoted the biosynthesis of Chlorogenic acid (CGA) and lignin, but repressed the accumulation of scopoletin and flavonoids in tobacco. Transcriptome analysis found 7 phenylpropanoids related differentially expressed genes (DEGs) between WT and NtWRKY41a-OE plants, among which the transcription of NtCCoAOMT and NtHST was significantly induced by posttranslational activation of NtWRKY41a, while those of NtF6'H1 and NtGT3 was significantly repressed by NtWRKY41a. Chromatin immunoprecipitation and Dual-Luc assays further indicated that NtWRKY41a could bind to the promoter regions of these four genes to regulate their transcription. Moreover, ectopic expression of NtWRKY41a also promoted the transcription of several NtLOX and NtHPL genes, which encode key enzymes involved in the oxylipin pathway. Our findings revealed new functions of NtWRKY41a in modulating the distribution of metabolism flux in phenylpropanoids pathway, and provided a promising target for manipulating phenylpropanoids contents in tobacco.


Subject(s)
Nicotiana/genetics , Nicotiana/metabolism , Phenols/metabolism , Secondary Metabolism/genetics , Cloning, Molecular , Gene Expression Regulation, Plant , Genes, Plant
14.
Oncogene ; 41(2): 268-279, 2022 01.
Article in English | MEDLINE | ID: mdl-34728806

ABSTRACT

MicroRNA-3662 (miR-3662) is minimally expressed in normal human tissues but is highly expressed in all types of cancers, including breast cancer. As determined with The Cancer Genome Atlas dataset, miR-3662 expression is higher in triple-negative breast cancers (TNBCs) and African American breast cancers than in other breast cancer types. However, the functional role of miR-3662 remains a topic of debate. Here, we found that inhibition or knockout of endogenous, mature miR-3662 in TNBC cells suppresses proliferation and migration in vitro and tumor growth and metastasis in vivo. Functional analysis revealed that, for TNBC cells, knockout of miR-3662 reduces the activation of Wnt/ß-catenin signaling. Furthermore, using CRISPR-mediated miR-3662 activation and repression, dual-luciferase assays, and miRNA/mRNA immunoprecipitation assays, we established that HMG-box transcription factor 1 (HBP-1), a Wnt/ß-catenin signaling inhibitor, is a target of miR-3662 and is most likely responsible for miR-3662-mediated TNBC cell proliferation. Our results suggest that miR-3662 has an oncogenic function in tumor progression and metastasis via an miR-3662-HBP1 axis, regulating the Wnt /ß-catenin signaling pathway in TNBC cells. Since miR-3662 expression occurs a tumor-specific manner, it is a promising biomarker and therapeutic target for patients who have TNBCs with dysregulation of miR-3662, especially African Americans.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Triple Negative Breast Neoplasms/genetics , Wnt Signaling Pathway/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Disease Progression , Female , Humans , Mice , Transfection
15.
Nucleic Acids Res ; 50(D1): D1448-D1455, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34718712

ABSTRACT

The advent of single-cell sequencing opened a new era in transcriptomic and genomic research. To understand cell composition using single-cell studies, a variety of cell markers have been widely used to label individual cell types. However, the specific database of cell markers for use by the plant research community remains very limited. To overcome this problem, we developed the Plant Cell Marker DataBase (PCMDB, http://www.tobaccodb.org/pcmdb/), which is based on a uniform annotation pipeline. By manually curating over 130 000 research publications, we collected a total of 81 117 cell marker genes of 263 cell types in 22 tissues across six plant species. Tissue- and cell-specific expression patterns can be visualized using multiple tools: eFP Browser, Bar, and UMAP/TSNE graph. The PCMDB also supports several analysis tools, including SCSA and SingleR, which allows for user annotation of cell types. To provide information about plant species currently unsupported in PCMDB, potential marker genes for other plant species can be searched based on homology with the supported species. PCMDB is a user-friendly hierarchical platform that contains five built-in search engines. We believe PCMDB will constitute a useful resource for researchers working on cell type annotation and the prediction of the biological function of individual cells.


Subject(s)
Databases, Genetic , Genetic Markers/genetics , Plants/genetics , Software , Computational Biology , Genomics , Plant Cells/classification , Plants/classification , Transcriptome/genetics , User-Computer Interface
16.
Mol Hortic ; 2(1): 13, 2022 May 08.
Article in English | MEDLINE | ID: mdl-37789488

ABSTRACT

The current kiwifruit industry is mainly based on the cultivars derived from the species Actinidia chinensis (Ac) which may bring risks such as canker disease. Introgression of desired traits from wild relatives is an important method for improving kiwifruit cultivars. Actinidia eriantha (Ae) is a particularly important taxon used for hybridization or introgressive breeding of new kiwifruit cultivars because of its valued species-specific traits. Here, we assembled a chromosome-scale high-quality genome of a Ae sample which was directly collected from its wild populations. Our analysis revealed that 41.3% of the genome consists of repetitive elements, comparable to the percentage in Ac and Ae cultivar "White" genomes. The genomic structural variation, including the presence/absence-variation (PAV) of genes, is distinct between Ae and Ac, despite both sharing the same two kiwifruit-specific whole genome duplication (WGD) events. This suggests that a post-WGD divergence mechanism occurred during their evolution. We further investigated genes involved in ascorbic acid biosynthesis and disease-resistance of Ae, and we found introgressive genome could contribute to the complex relationship between Ae and other representative kiwifruit taxa. Collectively, the Ae genome offers valuable genetic resource to accelerate kiwifruit breeding applications.

17.
Polymers (Basel) ; 13(9)2021 May 02.
Article in English | MEDLINE | ID: mdl-34063268

ABSTRACT

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C-S-H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.

18.
Chem Commun (Camb) ; 57(30): 3680-3683, 2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33725076

ABSTRACT

Chiral carbon dots are prepared by a simple and one-step hydrothermal reaction at 180 °C for 2 h using citric acid and d-proline as precursors, which show high asymmetric catalytic activity for enantioselective direct aldol condensation. This work provides a hint for the simple preparation of heterogeneous chiral catalysts.

19.
Front Genet ; 12: 768942, 2021.
Article in English | MEDLINE | ID: mdl-35178069

ABSTRACT

The gibberellic acid stimulated Arabidopsis (GASA) gene family is critical for plant growth, development, and stress response. GASA gene family has been studied in various plant species, however, the GASA gene family in tobacco (Nicotiana tabacum) have not been characterized in detail. In this study, we identified 18 GASA genes in the tobacco genome, which were distributed to 13 chromosomes. All the proteins contained a conserved GASA domain and highly specific 12-cysteine residues at the C-terminus. Phylogenetic analysis divided the NtGASA genes into three well-conserved subfamilies. Synteny analysis suggested that tandem and segmental duplications played an important role in the expansion of the NtGASA gene family. Cis-elements analysis showed that NtGASA genes might influence different phytohormone and stress responses. Tissue expression analysis revealed that NtGASA genes displayed unique or distinct expression patterns in different tissues, suggesting their potential roles in plant growth and development. We also found that the expression of NtGASA genes were mostly regulated by abscisic and gibberellic acid, signifying their roles in the two phytohormone signaling pathways. Overall, these findings improve our understanding of NtGASA genes and provided useful information for further studies on their molecular functions.

20.
Medicine (Baltimore) ; 99(43): e22000, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33120728

ABSTRACT

The expression of tumor stem cell markers musashi1 (msi1) and numb in brain metastases were detected to explore their roles in the development of brain metastases.A total of 51 cases of brain metastasis, 29 cases of primary tumor and 15 cases of normal brain tissue were selected. Immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) were used to detect msi1 and numb expression at the protein and mRNA levels. Correlation between msi1 and numb in brain metastases were evaluated.Immunohistochemistry and RT-PCR showed that no significant difference in the expression of msi1 and numb between brain metastases and primary tumors was observed (P > .05); the expression of msi1 and numb in brain metastases was significantly higher than that in normal brain tissues (P < .05); and the expression of msi1 and numb in primary tumors was significantly higher than that in normal brain tissues (P < .05). In general, the expression of msi1 gene was negatively correlated with the expression of numb at mRNA level by Pearson correlation analysis (r = -0.345, P < .05). Additionally, the expression of msi1 and numb in brain metastases was not related to gender, age, and tissue origin (P > .05).Msi1 is highly expressed in brain metastases and primary tumors, while numb is lowly expressed in brain metastases and primary tumors; msi1 and numb are negatively correlated in brain metastases, suggesting that msi1 and numb may have regulatory mechanisms in the development of brain metastases.


Subject(s)
Brain Neoplasms/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Adult , Aged , Brain/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Case-Control Studies , Female , Humans , Immunohistochemistry , Male , Membrane Proteins/metabolism , Middle Aged , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...