Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cell Death Discov ; 10(1): 271, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830900

ABSTRACT

The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.

2.
iScience ; 27(5): 109616, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706845

ABSTRACT

Among various electrocatalysts, high-entropy alloys (HEAs) have gained significant attention for their unique properties and excellent catalytic activity in the hydrogen evolution reaction (HER). However, the precise synthesis of HEA catalysts in small sizes remains challenging, which limits further improvement in their catalytic performance. In this study, boron- and nitrogen-doped HEA porous carbon nanofibers (HE-BN/PCNF) with an in situ-grown dendritic structure were successfully prepared, inspired by the germination and growth of tree branches. Furthermore, the dendritic fibers constrained the growth of HEA particles, leading to the synthesis of quantum dot-sized (1.67 nm) HEA particles, which also provide a pathway for designing HEA quantum dots in the future. This work provides design ideas and guiding suggestions for the preparation of borated HEA fibers with different elemental combinations and for the application of dendritic nanofibers in various fields.

3.
ACS Appl Mater Interfaces ; 16(14): 17506-17516, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38538567

ABSTRACT

Although the conversion of O2 and H2O to H2O2 over graphite carbon nitride (g-C3N4) has been realized by means of the photocatalytic process, the catalytic activity of pristine g-C3N4 is still restricted by the rapid charge recombination and inadequate exposure of the active site. In this work, we propose a straightforward strategy to solve these limitations by decreasing the thickness and improving the crystallinity of g-C3N4, resulting in the preparation of few-layered crystalline carbon nitride (FL-CCN). Benefiting from the minimal thickness and highly ordered in-plane triangular cavities within the structure, FL-CCN processes an extended π-conjugated system with a reduced charge transfer resistance and expanded specific surface area. These features accelerate the efficiency of photogenerated charge separation in FL-CCN and contribute to explore of its surface active sites. Consequently, FL-CCN exhibits a significantly improved H2O2 evolution rate (63.95 µmol g-1 h-1), which is 7.8 times higher than that of pristine g-C3N4 (8.15 µmol g-1 h-1), during the photocatalytic conversion of O2 and H2O. This systematic investigation offers valuable insights into the mechanism of photocatalytic H2O2 generation and the development of efficient catalysts.

4.
Environ Res ; 249: 118497, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38365054

ABSTRACT

Developing a photoelectric cathode capable of efficiently activating molecular oxygen to degrade pollutants is a coveted yet challenging goal. In pursuit of this, we synthesize a Fe doped porous carbon nitride catalyst (Fe-CN) using an ionothermal strategy and subsequently loaded it on the hydrophobic carbon felt (CF) to fabricate the Fe-CN/CF photoelectric cathode. This cathode benefits from the synergistic effects between the porous CN support and the highly dispersed Fe species, which enhance O2 absorption and activation. Additionally, the hydrophobic CF serves as a gas diffusion layer, accelerating O2 mass transfer. These features enable the Fe-CN/CF cathode to demonstrate notable photoelectrocatalytic (PEC) degradation efficiency. Specifically, under optimal conditions (cathodic bias of -0.3 VAg/AgCl, pH 7, and a catalyst loading of 3 mg/cm2), the system achieves a 76.4% removal rate of tetracycline (TC) within 60 min. The general application potential of this system is further underscored by its ability to remove approximately 98% of 4-chlorophenol (4-CP) and phenol under identical conditions. Subsequent investigations into the active species and degradation pathways reveal that 1O2 and h+ play dominant role during the PEC degradation process, leading to gradually breakdown of TC into less toxicity, smaller molecular intermediates. This work presents a straightforward yet effective strategy for constructing efficient PEC systems that leverage molecular oxygen activation to degrade pollutants.


Subject(s)
Carbon , Iron , Nitriles , Oxygen , Nitriles/chemistry , Oxygen/chemistry , Carbon/chemistry , Iron/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Porosity , Hydrophobic and Hydrophilic Interactions , Electrodes , Electrochemical Techniques/methods
5.
Clin Biomech (Bristol, Avon) ; 111: 106139, 2024 01.
Article in English | MEDLINE | ID: mdl-38039953

ABSTRACT

BACKGROUND: Dance-based exergaming has exhibited efficacy in people with chronic stroke, it is beneficial to advance towards independent self-training to increase long-term compliance, and cost effectiveness through safety harness devices. Thus, the purpose of the study was to investigate people with chronic stroke's dance-movement kinematics to different types of assistance, namely no assistance, safety harness assistance, and contact guard assistance with gait belt. METHODS: Community-dwelling people with chronic stroke (n = 10) participated in the study. Seven inertial sensors were used to capture their dance movements with three songs slow, medium, and fast pace. Three trials were recorded for each dance and the mean values of variables were used for analysis. A customized MATLAB code generated joint angle excursions (difference between the maximum and minimum angle peaks) of the hip, knee, and ankle in the sagittal plane. FINDINGS: The results exhibited decreased joint angle excursions in no assistance condition in comparison to safety harness assistance and contact guard assistance conditions for all song paces (p < 0.05). The safety harness, and contact guard assistance condition exhibited similar levels of joint angle excursions for the all the conditions, except significantly higher hip (slow, and fast pace) (p < 0.05), and ankle (medium pace) (p < 0.05) joint angle excursions in contact guard assistance in comparison to safety harness assistance. INTERPRETATION: The study represents the joint angle excursions that are influenced by different conditions in chronic stroke. Future studies, should evaluate feasibility of safety harness augmented dance-based exergaming in home-setting among chronic stroke.


Subject(s)
Dancing , Stroke , Humans , Biomechanical Phenomena , Exergaming , Stroke/therapy , Ankle , Knee Joint , Gait
6.
Phys Med Biol ; 69(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38048630

ABSTRACT

Objective.Low efficiency in medical image segmentation is a common issue that limits computer-aided diagnosis development. Due to the varying positions and sizes of nodules, it is not easy to accurately segment ultrasound images. This study aims to propose a segmentation model that maintains high efficiency while improving accuracy.Approach. We propose a novel layer that integrates the advantages of dense connectivity, dilated convolution, and factorized filters to maintain excellent efficiency while improving accuracy. Dense connectivity optimizes feature reuse, dilated convolution redesigns layers, and factorized convolution improves efficiency. Moreover, we propose a loss function optimization method from a pixel perspective to increase the network's accuracy further.Main results.Experiments on the Thyroid dataset show that our method achieves 81.70% intersection-over-union (IoU), 90.50% true positive rate (TPR), and 0.25% false positive rate (FPR). In terms of accuracy, our method outperforms the state-of-the-art methods, with twice faster inference and nearly 400 times fewer parameters. Meanwhile, in a test on an External Thyroid dataset, our method achieves 77.03% IoU, 82.10% TPR, and 0.16% FPR, demonstrating our proposed model's robustness.Significance.We propose a real-time semantic segmentation architecture for thyroid nodule segmentation in ultrasound images called fully convolution dense dilated network (FCDDN). Our method runs fast with a few parameters and is suitable for medical devices requiring real-time segmentation.


Subject(s)
Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Semantics , Ultrasonography , Diagnosis, Computer-Assisted , Image Processing, Computer-Assisted
7.
Front Sports Act Living ; 5: 1195773, 2023.
Article in English | MEDLINE | ID: mdl-37780126

ABSTRACT

Background: Perturbation-based training has shown to be effective in reducing fall-risk in people with chronic stroke (PwCS). However, most evidence comes from treadmill-based stance studies, with a lack of research focusing on training overground perturbed walking and exploring the relative contributions of the paretic and non-paretic limbs. This study thus examined whether PwCS could acquire motor adaptation and demonstrate immediate retention of fall-resisting skills following bilateral overground gait-slip perturbation training. Methods: 65 PwCS were randomly assigned to either (i) a training group, that received blocks of eight non-paretic (NP-S1 to NP-S8) and paretic (P-S1 to P-S8) overground slips during walking followed by a mixed block (seven non-paretic and paretic slips each interspersed with unperturbed walking trials) (NP-S9/P-S9 to NP-S15/P-S15) or (ii) a control group, that received a single non-paretic and paretic slip in random order. The assessor and training personnel were not blinded. Immediate retention was tested for the training group after a 30-minute rest break. Primary outcomes included laboratory-induced slip outcomes (falls and balance loss) and center of mass (CoM) state stability. Secondary outcomes to understand kinematic contributors to stability included recovery strategies, limb kinematics, slipping kinematics, and recovery stride length. Results: PwCS within the training group showed reduced falls (p < 0.01) and improved post-slip stability (p < 0.01) from the first trial to the last trial of both paretic and non-paretic slip blocks (S1 vs. S8). During the mixed block training, there was no further improvement in stability and slipping kinematics (S9 vs. S15) (p > 0.01). On comparing the first and last training trial (S1 vs. S15), post-slip stability improved on both non-paretic and paretic slips, however, pre-slip stability improved only on the non-paretic slip (p < 0.01). On the retention trials, the training group had fewer falls and greater post-slip stability than the control group on both non-paretic and paretic slips (p < 0.01). Post-slip stability on the paretic slip was lower than that on the non-paretic slip for both groups on retention trials (p < 0.01). Conclusion: PwCS can reduce laboratory-induced slip falls and backward balance loss outcomes by adapting their post-slip CoM state stability after bilateral overground gait-slip perturbation training. Such reactive adaptations were better acquired and retained post-training in PwCS especially on the non-paretic slips than paretic slips, suggesting a need for higher dosage for paretic slips. Clinical registry number: NCT03205527.

9.
Sensors (Basel) ; 23(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37420703

ABSTRACT

Trip perturbations are proposed to be a leading cause of falls in older adults. To prevent trip-falls, trip-related fall risk should be assessed and subsequent task-specific interventions improving recovery skills from forward balance loss should be provided to the individuals at risk of trip-fall. Therefore, this study aimed to develop trip-related fall risk prediction models from one's regular gait pattern using machine-learning approaches. A total of 298 older adults (≥60 years) who experienced a novel obstacle-induced trip perturbation in the laboratory were included in this study. Their trip outcomes were classified into three classes: no-falls (n = 192), falls with lowering strategy (L-fall, n = 84), and falls with elevating strategy (E-fall, n = 22). A total of 40 gait characteristics, which could potentially affect trip outcomes, were calculated in the regular walking trial before the trip trial. The top 50% of features (n = 20) were selected to train the prediction models using a relief-based feature selection algorithm, and an ensemble classification model was selected and trained with different numbers of features (1-20). A ten-times five-fold stratified method was utilized for cross-validation. Our results suggested that the trained models with different feature numbers showed an overall accuracy between 67% and 89% at the default cutoff and between 70% and 94% at the optimal cutoff. The prediction accuracy roughly increased along with the number of features. Among all the models, the one with 17 features could be considered the best model with the highest AUC of 0.96, and the model with 8 features could be considered the optimal model, which had a comparable AUC of 0.93 and fewer features. This study revealed that gait characteristics in regular walking could accurately predict the trip-related fall risk for healthy older adults, and the developed models could be a helpful assessment tool to identify the individuals at risk of trip-falls.


Subject(s)
Gait , Postural Balance , Humans , Aged , Walking , Machine Learning
10.
Bioresour Technol ; 384: 129226, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37270147

ABSTRACT

Copper (Cu) and zinc (Zn) in piglet feed can lead to heavy metals (HMs) accumulation in pig manure (PM). Composting is crucial for recycling biowaste and decreasing HMs bioavailability. This study aimed to investigate the impact of adding wine grape pomace (WGP) on the bioavailability of HMs during PM composting. WGP facilitated the passivation of HMs through Cytophagales and Saccharibacteria_genera_incertae_sedis which promoted the formation of humic acid (HA). Polysaccharide and aliphatic groups in HA dominated the transformation of chemical forms of HMs. Moreover, adding 60% and 40% WGP enhanced the Cu and Zn passivation effects by 47.24% and 25.82%, respectively. Polyphenol conversion rate and core bacteria were identified as key factors in affecting HMs passivation. These results offered new insights into the fate of HMs during PM composting in response to the addition of WGP, which is helpful to practical application of WGP to inactivate HMs for improving compost quality.


Subject(s)
Composting , Metals, Heavy , Vitis , Animals , Swine , Copper , Zinc , Humic Substances , Manure/microbiology , Soil , Metals, Heavy/analysis , Organic Chemicals
11.
Front Oncol ; 13: 1162300, 2023.
Article in English | MEDLINE | ID: mdl-37152066

ABSTRACT

N6-methyladenosine (m6A) is the most pervasive RNA modification in eukaryotic cells. The dynamic and reversible m6A modification of RNA plays a critical role in the occurrence and progression of tumors by regulating RNA metabolism, including translocation, mRNA stability or decay, pre-mRNA splicing, and lncRNA processing. Numerous studies have shown that m6A modification is involved in the development of various cancers. This review aims to summarize the significant role of m6A modification in the proliferation and tumorigenesis of CRC, as well as the potential of modulating m6A modification for tumor treatment. These findings may offer new therapeutic strategies for clinical implementation of m6A modification in CRC in the near future.

12.
Gait Posture ; 102: 186-192, 2023 05.
Article in English | MEDLINE | ID: mdl-37031629

ABSTRACT

BACKGROUND: Impaired reactive responses to sudden environmental perturbations contribute to heightened fall-risk in healthy aging and neurologically impaired populations. Previous studies have demonstrated individual contributions of paretic and non-paretic sides to fall-risk in people with stroke with variable levels of motor impairment. However, the combined effect of aging and unilateral cortical lesion on reactive balance control is not clearly understood. We therefore aimed to examine age-related differences in reactive balance control and fall-risk during laboratory-induced gait-slips in people with comparable stroke-related motor impairments. METHODS: Thirteen younger (45.61 ± 4.61 years) and thirteen older (71.92 ± 6.50 years) adults with similar stroke-related impairment (on Fugl-Meyer Lower Extremity Assessment) were exposed to one overground gait-slip under each limb (paretic and non-paretic). Center of mass state stability and slipping kinematics (slip displacement and velocity) were computed. Clinical balance and mobility were also assessed. RESULTS: On non-paretic slips, older adults with chronic stroke demonstrated greater falls and lower center of mass stability (its position and velocity) at post-slip touchdown compared to younger adults with chronic stroke (p < 0.01). This was accompanied with a greater peak slip displacement and faster peak slip velocity (p < 0.01). However, there were no such group differences noted on the paretic slips (p > 0.01). CONCLUSION: Aging may have an independent, detrimental effect on reactive balance control in people with chronic stroke. Non-paretic deficits in controlling slip intensities (slip displacement and velocity) can accentuate fall-risk in older adults with chronic stroke. Further investigation is necessary to identify additional factors attributing to heightened fall-risk in older adults with chronic stroke.


Subject(s)
Postural Balance , Stroke , Humans , Aged , Postural Balance/physiology , Stroke/complications , Gait/physiology , Aging/physiology , Biomechanical Phenomena , Lower Extremity , Walking/physiology
13.
J Mot Behav ; 55(2): 193-201, 2023.
Article in English | MEDLINE | ID: mdl-36603841

ABSTRACT

This study aimed to identify the kinematic measures determining balance outcome following an over-ground trip perturbation. 117 healthy older adults who experienced laboratory-induced trips were divided into loss of balance (LOB) and no LOB groups. The LOB group contained 27 fallers and 34 non-fallers, and the no LOB group contained 21 participants using cross-over strategy and 35 participants using obstacle-hit strategy. A 2-class hierarchical regression model for balance loss showed that margin of stabilty could determine the balance outcomes (LOB or not) with an overall accuracy of 92.7%. The 4-class model for recovery strategies showed that the combination of margin of stability, trunk angle, and COM velocity could determine 81.9% of strategies. Our findings would enhance intervention development for populations at risk of trip-induced falls.


Subject(s)
Accidental Falls , Postural Balance , Humans , Aged , Biomechanical Phenomena , Gait , Walking
14.
Article in English | MEDLINE | ID: mdl-36674061

ABSTRACT

Aerosol particles, such as the widespread COVID-19 recently, have posed a great threat to humans. Combat experience has proven that masks can protect against viruses; however, the epidemic in recent years has caused serious environmental pollution from plastic medical supplies, especially masks. Degradable filters are promising candidates to alleviate this problem. Degradable nanofiber filters, which are developed by the electrospinning technique, can achieve superior filtration performance. This review focuses on the basic introduction to air filtration, the general aspects of face masks, and nanofibers. Furthermore, the progress of the state of art degradable electrospun nanofiber filters have been summarized, such as silk fibroin (SF), polylactic acid (PLA), chitosan, cellulose, and zein. Finally, the challenges and future development are highlighted.


Subject(s)
COVID-19 , Nanofibers , Humans , Masks , COVID-19/prevention & control , Respiratory Aerosols and Droplets , Filtration/methods
15.
Sci Rep ; 12(1): 19851, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400866

ABSTRACT

Individuals can rapidly develop adaptive skills for fall prevention after their exposure to the repeated-slip paradigm. However, the changes in neuromuscular control contributing to such motor adaptation remain unclear. This study investigated changes in neuromuscular control across different stages of slip-adaptation by examining muscle synergies during slip training. Electromyography signals during 24 repeated slip trials in gait were collected for 30 healthy older adults. Muscle synergies in no-adaptation (novel slip), early-adaptation (slip 6 to 8), and late-adaptation trials (slip 22 to 24) were extracted. The similarity between the recruited muscle synergies in these different phases was subsequently analyzed. Results showed that participants made significant improvements in their balance outcomes from novel slips to adapted slips. Correspondingly, there was a significant increase in the muscle synergy numbers from no-adaptation slips to the adapted slips. The participants retained the majority of muscle synergies (5 out of 7) used in novel slips post adaptation. A few new patterns (n = 8) of muscle synergies presented in the early-adaptation stage to compensate for motor errors due to external perturbation. In the late-adaptation stage, only 2 out of these 8 new synergies were retained. Our findings indicated that the central nervous system could generate new muscle synergies through fractionating or modifying the pre-existing synergies in the early-adaptation phase, and these synergies produce motor strategies that could effectively assist in recovery from the slip perturbation. During the late-adaptation phase, the redundant synergies generated in the early-adaptation phase get eliminated as the adaptation process progresses with repeated exposure to the slips, which further consolidates the slip adaptation. Our findings improved the understanding of the key muscle synergies involved in preventing backward balance loss and how neuromuscular responses adapt through repeated slip training, which might be helpful to design synergy-based interventions for fall prevention.


Subject(s)
Postural Balance , Walking , Humans , Aged , Walking/physiology , Postural Balance/physiology , Biomechanical Phenomena , Gait/physiology , Accidental Falls/prevention & control
16.
J Phys Ther Sci ; 34(9): 606-613, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36118656

ABSTRACT

[Purpose] To assess the agreement between our custom Bluetooth IS system and the gold standard MOCAP system during gait. Bluetooth inertial movement sensors (IS) allow for real-time movement analysis with fewer restrictions than optoelectrical motion capture systems (MOCAP) and more accessibility than wireless IS systems. [Participants and Methods] We collected simultaneous Bluetooth IS and MOCAP data for 16 young participants walking at a self-selected speed. Sensors were placed on the right thigh and shank. Segment angles and stride length were calculated and compared between systems using Pearson's correlation coefficients (R), intra-class correlation coefficients (ICC), root mean square errors (RMSE), limits of agreement (LOA), and Bland-Altman plots. [Results] R values ranged from 0.371-0.715; ICC values ranged from 0.263-0.770. RMSE was 0.369 m for stride length and ranged from 6.85-13.07° in segment angles. Limits of agreement were -0.01-0.66 m for stride length and ranged from -27.71-20.53° in segment angles. [Conclusion] The Bluetooth IS system showed moderate agreement with MOCAP. Bluetooth IS could be used for reliable gait analysis with fewer space requirements and more portability than wireless IS or MOCAP systems. Bluetooth IS could be used outside of the clinic for real-time monitoring of gait during daily life.

17.
Brain Sci ; 12(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35884758

ABSTRACT

During balance recovery from slip perturbations, forward flexion (elevation) of the arms serves to counterbalance the posteriorly displaced center of mass (CoM). We aimed to investigate whether aging affects modulation of arm responses to various intensities of unpredictable slip perturbations and whether arm responses are related to compensatory stepping stability. Ten healthy young adults and ten healthy older adults participated. Participants were asked to react naturally to three randomly administered levels of slip-like surface perturbations (intensity 1 (7.75 m/s2), intensity 2 (12.00 m/s2) and intensity 3 (16.75 m/s2), which occurred by means of forward acceleration of the treadmill belt while standing. Kinematic data were collected using a motion capture system. Outcomes included arm elevation displacement, velocity, and margin of stability (MoS) of compensatory stepping. The results reveal no modulation of arm elevation velocity in older adults from perturbation intensity 1 to 2, whereas younger adults demonstrated progressive increases from intensity 1 to 2 to 3. At intensity 3, older adults demonstrated reduced maximal arm elevation velocity compared to younger adults (p = 0.02). The results in both groups combined reveal a positive correlation between maximal arm elevation velocity and first compensatory step MoS at intensity 3 (p = 0.01). Together, these findings indicate age-related decreases in arm response modulation and the association of arm elevation response with protective stepping stability, suggesting that fall prevention interventions may benefit from an emphasis on arm elevation velocity control in response to greater perturbation intensities.

18.
Sensors (Basel) ; 22(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591025

ABSTRACT

Slip-induced falls are a growing health concern for older adults, and near-fall events are associated with an increased risk of falling. To detect older adults at a high risk of slip-related falls, this study aimed to develop models for near-fall event detection based on accelerometry data collected by body-fixed sensors. Thirty-four healthy older adults who experienced 24 laboratory-induced slips were included. The slip outcomes were first identified as loss of balance (LOB) and no LOB (NLOB), and then the kinematic measures were compared between these two outcomes. Next, all the slip trials were split into a training set (90%) and a test set (10%) at sample level. The training set was used to train both machine learning models (n = 2) and deep learning models (n = 2), and the test set was used to evaluate the performance of each model. Our results indicated that the deep learning models showed higher accuracy for both LOB (>64%) and NLOB (>90%) classifications than the machine learning models. Among all the models, the Inception model showed the highest classification accuracy (87.5%) and the largest area under the receiver operating characteristic curve (AUC), indicating that the model is an effective method for near-fall (LOB) detection. Our approach can be helpful in identifying individuals at the risk of slip-related falls before they experience an actual fall.


Subject(s)
Gait , Wearable Electronic Devices , Aged , Humans , Locomotion , Postural Balance , Walking
19.
J Appl Biomech ; 38(3): 148-154, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35483699

ABSTRACT

Older adults could experience split falls or feet-forward falls following an unexpected slip in gait due to different neuromuscular vulnerabilities, and different intervention strategies would be required for each type of faller. Thus, this study aimed to investigate the key factors affecting the fall types based on regular gait pattern. A total of 105 healthy older adults who experienced a laboratory-induced slip and fall were included. Their natural walking trial immediately prior to the novel slip trial was analyzed. To identify the factors related to fall type, gait characteristics and demographic factors were determined using univariate logistic regression, and then stepwise logistic regression was conducted to assess the slip-induced fall type based on these factors. The best fall-type prediction model involves gait speed and recovery foot angular velocity, which could predict 70.5% of feet-forward falls and 86.9% of split falls. Body mass index was also a crucial fall-type prediction with an overall prediction accuracy of 70.5%. Along with gait parameters, 84.1% of feet-forward falls and 78.7% of split falls could be predicted. The findings in this study revealed the determinators related to fall types, which enhances our knowledge of the mechanism associated to slip-induced fall and would be helpful for the development of tailored interventions for slip-induced fall prevention.


Subject(s)
Gait , Postural Balance , Aged , Biomechanical Phenomena , Humans , Walking , Walking Speed
20.
Environ Res ; 212(Pt B): 113326, 2022 09.
Article in English | MEDLINE | ID: mdl-35439458

ABSTRACT

Constructing heterostructures has been a simple yet effective strategy for improving the photocatalytic performance of individual semiconductor photocatalysts. However, the poor quality of the contacted interface coupled with the narrow and overlapping light absorption scope between heterocomponents limits potential improvement. Herein, a 2D/2D rGO-Bi2WO6 heterostructure with face-to-face compact contact interface and UV to NIR light absorption ability was synthesized to overcome the aforementioned limitations. The as-prepared 2 wt%-rGO-Bi2WO6 with a high contact interface quality exhibits the highest kinetic rate of (5.53 ± 0.75) × 10-2 L mg-1 min-1 toward tetracycline (TC) degradation, which is 2.4 times higher than that of pristine Bi2WO6 and 2.1 times higher than that of the 2 wt%-rGO-Bi2WO6 composite with a poor interface quality. Moreover, approximately 30% of TC can be mineralized with a 2 wt%-rGO-Bi2WO6 presented system after 120 min. The subsequent Escherichia coli culture and liquid chromatography-mass spectrometry were employed to detect the biotoxicity variation of degradation intermediates and the possible transformation pathways of TC, respectively. Finally, the reactive species trapping results indicate that photogenerated holes and superoxide radical anions play dominant roles during the TC degradation process. This work provides a facile and effective method to fabricate an efficient heterojunction photocatalyst for pollutant degradation.


Subject(s)
Graphite , Tetracycline , Anti-Bacterial Agents/chemistry , Catalysis , Light , Tetracycline/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...