Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Chem Asian J ; : e202400608, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949517

ABSTRACT

Uracil-DNA glycosylase (UDG) plays a crucial role in the removal of damaged uracil bases, thereby upholding genetic stability and integrity. An enzyme-powered, label-free DNA walker was devised for UDG activity detection. Initially, a label-free DNA track, incorporating a gold nanoparticle (AuNP), multiple hairpin structures, and various swing arms, was engineered for walking mechanism. The hairpin structure was meticulously crafted to include a G-quadruplex sequence, enabling the generation of a label-free fluorescence signal. The swing arm remained inert in the absence of UDG, but became activated upon the introduction of UDG, thereby initiating the enzyme-powered walking process and generating significant dissociative G-quadruplex sequences. By integrating a selective fluorescent dye into the design, an enhanced label-free fluorescence response was achieved. The proposed DNA walker presented a direct and label-free approach for UDG detection, demonstrating exceptional sensitivity with a detection limit of 0.00004 U/mL. Using the uracil glycosylase inhibitor (UGI) as an inhibitory model, inhibitor assay was conducted with satisfactory precision. Furthermore, successful analysis of cellular UDG at the single-cell level was accomplished. Consequently, the developed DNA walker serves as a label-free, selective, and sensitive tool for UDG activity assessment, showing great potential for applications in disease diagnosis, inhibitor screening, and biomedical investigations.

2.
Mikrochim Acta ; 191(2): 119, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38300297

ABSTRACT

A ratiometric fluorescence platform was developed based on the cobalt oxyhydroxide (CoOOH) nanosheet-modulated fluorescence response of blue emissive copper nanoclusters (Cu NCs) and yellow emissive o-phenylenediamine (OPD). CoOOH nanosheets showed dual function of strong absorption and oxidation ability, which can effectively quench the blue fluorescence of Cu NCs, with an excitation and emission peak maximum at 390 and 450 nm, respectively , and transfer the OPD into yellow fluorescence products, with an excitation and emission peak maximum at 390 and 560 nm, respectively. Upon introducing butyrylcholinesterase (BChE) and its substrates, CoOOH nanosheets were decomposed into Co2+, and malachite green (MG) showed strong inhibition ability to this  process. This resulted in the obvious difference on the ratio of blue and yellow fluorescence recorded on the system in the presence and absence of MG, which was utilized for the quantitative detection of MG, with a limit of detection of 0.140 µM and a coefficient of variation of 3.5%. The fluorescence ratiometric assay showed excellent detection performances in practical sample analysis.


Subject(s)
Butyrylcholinesterase , Cobalt , Copper , Oxides , Phenylenediamines , Animals , Rosaniline Dyes , Fishes
3.
Int. microbiol ; 25(3): 515-529, Ago. 2022. ilus, graf
Article in English | IBECS | ID: ibc-216211

ABSTRACT

Kluyveromyces marxianus is expected to be used in the production of yeast extracts due to its good fermentation ability and nutritional properties. Yeast autolysis is a key process to produce yeast extract and vacuum negative pressure stress can be used as an effective way to assist autolysis. However, the molecular mechanism of initiating Kluyveromyces marxianus autolysis induced by vacuum negative pressure and the higher temperature is still unclear. In this study, RNA-seq technology was performed mainly to analyze autolytic processes in Kluyveromyces marxianus strains. Considerable differentially expressed genes (DEGs) of downregulation were significantly enriched in 7 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to synthesis and transport of RNA and ribosome, which indicated that abnormal protein translations had already occurred in autolytic process. Interestingly, due to obvious change of related DEGs, endoplasmic reticulum-associated degradation (ERAD) and autophagy were activated and cell wall integrity pathway was hindered. Under the continuous influence of the external stress environment, the long-term changes of the above pathways triggered a vicious circle of gradual damage to yeast cells, which is the main cause of yeast autolysis. These results may provide important clues for the in-depth interpretation of the yeast autolytic mechanism.(AU)


Subject(s)
Humans , Autolysis , Base Sequence , Kluyveromyces , Yeasts , Fermentation , Microbiology , Microbiological Techniques
4.
Int Microbiol ; 25(3): 515-529, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35156144

ABSTRACT

Kluyveromyces marxianus is expected to be used in the production of yeast extracts due to its good fermentation ability and nutritional properties. Yeast autolysis is a key process to produce yeast extract and vacuum negative pressure stress can be used as an effective way to assist autolysis. However, the molecular mechanism of initiating Kluyveromyces marxianus autolysis induced by vacuum negative pressure and the higher temperature is still unclear. In this study, RNA-seq technology was performed mainly to analyze autolytic processes in Kluyveromyces marxianus strains. Considerable differentially expressed genes (DEGs) of downregulation were significantly enriched in 7 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to synthesis and transport of RNA and ribosome, which indicated that abnormal protein translations had already occurred in autolytic process. Interestingly, due to obvious change of related DEGs, endoplasmic reticulum-associated degradation (ERAD) and autophagy were activated and cell wall integrity pathway was hindered. Under the continuous influence of the external stress environment, the long-term changes of the above pathways triggered a vicious circle of gradual damage to yeast cells, which is the main cause of yeast autolysis. These results may provide important clues for the in-depth interpretation of the yeast autolytic mechanism.


Subject(s)
Kluyveromyces , Transcriptome , Endoplasmic Reticulum-Associated Degradation , Fermentation , Kluyveromyces/genetics , Kluyveromyces/metabolism , Temperature , Vacuum
SELECTION OF CITATIONS
SEARCH DETAIL
...