Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38915691

ABSTRACT

Doublet microtubules (DMTs) are flagellar components required for the protist Trichomonas vaginalis ( Tv ) to swim through the human genitourinary tract to cause trichomoniasis, the most common non-viral sexually transmitted disease. Lack of DMT structures has prevented structure-guided drug design to manage Tv infection. Here, we determined the cryo-EM structure of native Tv- DMTs, identifying 29 unique proteins, including 18 microtubule inner proteins and 9 microtubule outer proteins. While the A-tubule is simplistic compared to DMTs of other organisms, the B-tubule features specialized, parasite-specific proteins, like Tv FAP40 and Tv FAP35 that form filaments near the inner and outer junctions, respectively, to stabilize DMTs and enable Tv locomotion. Notably, a small molecule, assigned as IP6, is coordinated within a pocket of Tv FAP40 and has characteristics of a drug molecule. This first atomic model of the Tv -DMT highlights the diversity of eukaryotic motility machinery and provides a structural framework to inform the rational design of therapeutics.

2.
BMC Mol Cell Biol ; 21(1): 54, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32689943

ABSTRACT

BACKGROUND: Trichomonas vaginalis, the causative agent of a prevalent urogenital infection in humans, is an evolutionarily divergent protozoan. Protein-coding genes in T. vaginalis are largely controlled by two core promoter elements, producing mRNAs with short 5' UTRs. The specific mechanisms adopted by T. vaginalis to fine-tune the translation efficiency (TE) of mRNAs remain largely unknown. RESULTS: Using both computational and experimental approaches, this study investigated two key factors influencing TE in T. vaginalis: codon usage and mRNA secondary structure. Statistical dependence between TE and codon adaptation index (CAI) highlighted the impact of codon usage on mRNA translation in T. vaginalis. A genome-wide interrogation revealed that low structural complexity at the 5' end of mRNA followed closely by a highly structured downstream region correlates with TE variation in this organism. To validate these findings, a synthetic library of 15 synonymous iLOV genes was created, representing five mRNA folding profiles and three codon usage profiles. Fluorescence signals produced by the expression of these synonymous iLOV genes in T. vaginalis were consistent with and validated our in silico predictions. CONCLUSIONS: This study demonstrates the role of codon usage bias and mRNA secondary structure in TE of T. vaginalis mRNAs, contributing to a better understanding of the factors that influence, and possibly regulate, gene expression in this human pathogen.


Subject(s)
Biological Evolution , Protein Biosynthesis , Trichomonas vaginalis/genetics , Base Sequence , Codon/genetics , Gene Library , Genes, Reporter , Nucleic Acid Conformation , Open Reading Frames/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Parasit Vectors ; 11(1): 607, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30482228

ABSTRACT

BACKGROUND: The human protozoan parasite Trichomonas vaginalis is an organism of interest for understanding eukaryotic evolution. Despite having an unusually large genome and a rich gene repertoire among protists, spliceosomal introns in T. vaginalis appear rare: only 62 putative introns have been annotated in this genome, and little or no experimental evidence exists to back up these predictions. RESULTS: This study revisited the 62 annotated introns of T. vaginalis derived from the genome sequencing plus previous publications. After experimental validation and a new genome-wide search, we confirmed the presence of introns in 32 genes and 18 others were concluded to be intronless. Sequence analyses classified the validated introns into two types, based on distinctive features such as length and conservation of splice site motifs. CONCLUSIONS: Our study provides an updated list of intron-containing genes in the genome of T. vaginalis. Our findings suggests the existence of two intron 'families' spread among T. vaginalis protein-coding genes. Additional studies are needed to understand the functional separation of these two classes of introns and to assess the existence of further introns in the T. vaginalis genome.


Subject(s)
Genome, Protozoan , Introns , RNA Splicing , Spliceosomes , Trichomonas vaginalis/genetics , Animals , Conserved Sequence , Evolution, Molecular , Humans , Phylogeny , RNA, Small Nuclear , Sequence Analysis, DNA
4.
Sci Rep ; 8(1): 270, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321601

ABSTRACT

The sexually-transmitted parasite Trichomonas vaginalis infects ~1/4 billion people worldwide. Despite its prevalence and myriad adverse outcomes of infection, the mechanisms underlying T. vaginalis pathogenesis are poorly understood. Genetic manipulation of this single-celled eukaryote has been hindered by challenges presented by its complex, repetitive genome and inefficient methods for introducing DNA (i.e. transfection) into the parasite. Here, we have developed methods to increase transfection efficiency using nucleofection, with the goal of efficiently introducing multiple DNA elements into a single T. vaginalis cell. We then created DNA constructs required to express several components essential to drive CRISPR/Cas9-mediated DNA modification: guide RNA (gRNA), the Cas9 endonuclease, short oligonucleotides and large, linearized DNA templates. Using these technical advances, we have established CRISPR/Cas9-mediated repair of mutations in genes contained on circular DNA plasmids harbored by the parasite. We also engineered CRISPR/Cas9 directed homologous recombination to delete (i.e. knock out) two non-essential genes within the T. vaginalis genome. This first report of the use of the CRISPR/Cas9 system in T. vaginalis greatly expands the ability to manipulate the genome of this pathogen and sets the stage for testing of the role of specific genes in many biological processes.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Knockout Techniques , Trichomonas vaginalis/genetics , Female , Gene Expression , Gene Targeting , Genes, Protozoan , Genes, Reporter , Genome, Protozoan , Humans , Trichomonas Vaginitis/parasitology
5.
Mol Biochem Parasitol ; 216: 1-4, 2017 09.
Article in English | MEDLINE | ID: mdl-28602728

ABSTRACT

Trichomonas vaginalis is a flagellated protozoan causing a notorious urogenital infection in humans. Due to its anaerobic metabolism, an alternative fluorescent protein that can be readily expressed in oxygen-deprived conditions is ideal. This study assessed the performance of iLOV, which does not require oxygen to function, as compared to the conventional enhanced green fluorescent protein (eGFP) in T. vaginalis. The results indicated that iLOV outperforms eGFP in both transient and stable expression, being detectable earlier and producing higher fluorescent intensity than eGFP in T. vaginalis. This finding facilitates forthcoming genetic studies that will advance the knowledge on this human parasitic infection.


Subject(s)
Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Trichomonas vaginalis/genetics , Microscopy, Fluorescence , Plasmids/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...