Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(5): 112511, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37195865

ABSTRACT

Several methods for generating human-skin-equivalent (HSE) organoid cultures are in use to study skin biology; however, few studies thoroughly characterize these systems. To fill this gap, we use single-cell transcriptomics to compare in vitro HSEs, xenograft HSEs, and in vivo epidermis. By combining differential gene expression, pseudotime analyses, and spatial localization, we reconstruct HSE keratinocyte differentiation trajectories that recapitulate known in vivo epidermal differentiation pathways and show that HSEs contain major in vivo cellular states. However, HSEs also develop unique keratinocyte states, an expanded basal stem cell program, and disrupted terminal differentiation. Cell-cell communication modeling shows aberrant epithelial-to-mesenchymal transition (EMT)-associated signaling pathways that alter upon epidermal growth factor (EGF) supplementation. Last, xenograft HSEs at early time points post transplantation significantly rescue many in vitro deficits while undergoing a hypoxic response that drives an alternative differentiation lineage. This study highlights the strengths and limitations of organoid cultures and identifies areas for potential innovation.


Subject(s)
Skin , Transcriptome , Humans , Transcriptome/genetics , Skin/metabolism , Keratinocytes/metabolism , Epidermis/metabolism , Cell Differentiation , Organoids
2.
Sci Adv ; 8(23): eabm7981, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35687691

ABSTRACT

How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the heterogeneity of each tissue type. Combining pseudotime, RNA velocity-PAGA, cellular entropy, and regulon analysis in stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-ß, and inflammatory signals induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling pathways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo tumor growth in a BCC mouse model, validating HSP70's essential role in tumor growth and reinforcing the critical nature of tumor microenvironment cross-talk in BCC progression.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Animals , Carcinoma, Basal Cell/drug therapy , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Ecosystem , Hedgehog Proteins , Humans , Mice , Single-Cell Analysis , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Tumor Microenvironment
3.
Nat Commun ; 12(1): 5609, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556644

ABSTRACT

Advances in single-cell technologies allow scrutinizing of heterogeneous cell states, however, detecting cell-state transitions from snap-shot single-cell transcriptome data remains challenging. To investigate cells with transient properties or mixed identities, we present MuTrans, a method based on multiscale reduction technique to identify the underlying stochastic dynamics that prescribes cell-fate transitions. By iteratively unifying transition dynamics across multiple scales, MuTrans constructs the cell-fate dynamical manifold that depicts progression of cell-state transitions, and distinguishes stable and transition cells. In addition, MuTrans quantifies the likelihood of all possible transition trajectories between cell states using coarse-grained transition path theory. Downstream analysis identifies distinct genes that mark the transient states or drive the transitions. The method is consistent with the well-established Langevin equation and transition rate theory. Applying MuTrans to datasets collected from five different single-cell experimental platforms, we show its capability and scalability to robustly unravel complex cell fate dynamics induced by transition cells in systems such as tumor EMT, iPSC differentiation and blood cell differentiation. Overall, our method bridges data-driven and model-based approaches on cell-fate transitions at single-cell resolution.


Subject(s)
Cell Lineage/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Single-Cell Analysis/methods , Stochastic Processes , Transcriptome/genetics , Algorithms , Animals , Cell Differentiation/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Genetic , Neoplasms/genetics , Neoplasms/pathology
4.
Lab Chip ; 21(7): 1333-1351, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33605955

ABSTRACT

Around 95% of anti-cancer drugs that show promise during preclinical study fail to gain FDA-approval for clinical use. This failure of the preclinical pipeline highlights the need for improved, physiologically-relevant in vitro models that can better serve as reliable drug-screening and disease modeling tools. The vascularized micro-tumor (VMT) is a novel three-dimensional model system (tumor-on-a-chip) that recapitulates the complex human tumor microenvironment, including perfused vasculature, within a transparent microfluidic device, allowing real-time study of drug responses and tumor-stromal interactions. Here we have validated this microphysiological system (MPS) platform for the study of colorectal cancer (CRC), the second leading cause of cancer-related deaths, by showing that gene expression, tumor heterogeneity, and treatment responses in the VMT more closely model CRC tumor clinicopathology than current standard drug screening modalities, including 2-dimensional monolayer culture and 3-dimensional spheroids.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Evaluation, Preclinical , Humans , Lab-On-A-Chip Devices , Tumor Microenvironment
5.
Nucleic Acids Res ; 48(17): 9505-9520, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32870263

ABSTRACT

Rapid growth of single-cell transcriptomic data provides unprecedented opportunities for close scrutinizing of dynamical cellular processes. Through investigating epithelial-to-mesenchymal transition (EMT), we develop an integrative tool that combines unsupervised learning of single-cell transcriptomic data and multiscale mathematical modeling to analyze transitions during cell fate decision. Our approach allows identification of individual cells making transition between all cell states, and inference of genes that drive transitions. Multiscale extractions of single-cell scale outputs naturally reveal intermediate cell states (ICS) and ICS-regulated transition trajectories, producing emergent population-scale models to be explored for design principles. Testing on the newly designed single-cell gene regulatory network model and applying to twelve published single-cell EMT datasets in cancer and embryogenesis, we uncover the roles of ICS on adaptation, noise attenuation, and transition efficiency in EMT, and reveal their trade-off relations. Overall, our unsupervised learning method is applicable to general single-cell transcriptomic datasets, and our integrative approach at single-cell resolution may be adopted for other cell fate transition systems beyond EMT.


Subject(s)
Embryonic Stem Cells/pathology , Epithelial-Mesenchymal Transition/physiology , Gene Expression Profiling , Gene Regulatory Networks , Models, Biological , Animals , Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Humans , Mice , Single-Cell Analysis , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
6.
Nat Commun ; 11(1): 4239, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32843640

ABSTRACT

How stem cells give rise to epidermis is unclear despite the crucial role the epidermis plays in barrier and appendage formation. Here we use single cell-RNA sequencing to interrogate basal stem cell heterogeneity of human interfollicular epidermis and find four spatially distinct stem cell populations at the top and bottom of rete ridges and transitional positions between the basal and suprabasal epidermal layers. Cell-cell communication modeling suggests that basal cell populations serve as crucial signaling hubs to maintain epidermal communication. Combining pseudotime, RNA velocity, and cellular entropy analyses point to a hierarchical differentiation lineage supporting multi-stem cell interfollicular epidermal homeostasis models and suggest that transitional basal stem cells are stable states essential for proper stratification. Finally, alterations in differentially expressed transitional basal stem cell genes result in severe thinning of human skin equivalents, validating their essential role in epidermal homeostasis and reinforcing the critical nature of basal stem cell heterogeneity.


Subject(s)
Cell Differentiation , Epidermal Cells/cytology , Homeostasis , Stem Cells/cytology , Cell Communication/genetics , Cell Differentiation/genetics , Cell Lineage/genetics , Epidermal Cells/metabolism , Epidermis/metabolism , Foreskin/cytology , Foreskin/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Infant, Newborn , Keratinocytes/cytology , Keratinocytes/metabolism , Male , Models, Biological , Signal Transduction , Stem Cells/metabolism
7.
Front Genet ; 11: 604585, 2020.
Article in English | MEDLINE | ID: mdl-33488673

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) plays an important role in many biological processes during development and cancer. The advent of single-cell transcriptome sequencing techniques allows the dissection of dynamical details underlying EMT with unprecedented resolution. Despite several single-cell data analysis on EMT, how cell communicates and regulates dynamics along the EMT trajectory remains elusive. Using single-cell transcriptomic datasets, here we infer the cell-cell communications and the multilayer gene-gene regulation networks to analyze and visualize the complex cellular crosstalk and the underlying gene regulatory dynamics along EMT. Combining with trajectory analysis, our approach reveals the existence of multiple intermediate cell states (ICSs) with hybrid epithelial and mesenchymal features. Analyses on the time-series datasets from cancer cell lines with different inducing factors show that the induced EMTs are context-specific: the EMT induced by transforming growth factor B1 (TGFB1) is synchronous, whereas the EMTs induced by epidermal growth factor and tumor necrosis factor are asynchronous, and the responses of TGF-ß pathway in terms of gene expression regulations are heterogeneous under different treatments or among various cell states. Meanwhile, network topology analysis suggests that the ICSs during EMT serve as the signaling in cellular communication under different conditions. Interestingly, our analysis of a mouse skin squamous cell carcinoma dataset also suggests regardless of the significant discrepancy in concrete genes between in vitro and in vivo EMT systems, the ICSs play dominant role in the TGF-ß signaling crosstalk. Overall, our approach reveals the multiscale mechanisms coupling cell-cell communications and gene-gene regulations responsible for complex cell-state transitions.

8.
Nucleic Acids Res ; 47(11): e66, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30923815

ABSTRACT

The use of single-cell transcriptomics has become a major approach to delineate cell subpopulations and the transitions between them. While various computational tools using different mathematical methods have been developed to infer clusters, marker genes, and cell lineage, none yet integrate these within a mathematical framework to perform multiple tasks coherently. Such coherence is critical for the inference of cell-cell communication, a major remaining challenge. Here, we present similarity matrix-based optimization for single-cell data analysis (SoptSC), in which unsupervised clustering, pseudotemporal ordering, lineage inference, and marker gene identification are inferred via a structured cell-to-cell similarity matrix. SoptSC then predicts cell-cell communication networks, enabling reconstruction of complex cell lineages that include feedback or feedforward interactions. Application of SoptSC to early embryonic development, epidermal regeneration, and hematopoiesis demonstrates robust identification of subpopulations, lineage relationships, and pseudotime, and prediction of pathway-specific cell communication patterns regulating processes of development and differentiation.


Subject(s)
Algorithms , Cell Lineage , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Single-Cell Analysis , Animals , Cell Communication , Cell Differentiation , Cluster Analysis , Embryonic Development , Hematopoiesis , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...