Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 295: 133935, 2022 May.
Article in English | MEDLINE | ID: mdl-35149011

ABSTRACT

The co-existence of volatile chlorinated hydrocarbons (VCHs) and nitrate pollution in groundwater is prominent, but how nitrate exposure affects weak-electrical stimulated bio-dechlorination activity of VCH is largely unknown. Here, by establishing weak-electrical stimulated trichloroethylene (TCE) dechlorination systems, the influence on TCE dechlorination by exposure to the different concentrations (25-100 mg L-1) of nitrate was investigated. The existence of nitrate in general decreased TCE dechlorination efficiency to varying degrees, and the higher nitrate concentration, the stronger the inhibitory effects, verified by the gradually decreased transcription levels of tceA. Although the TCE dechlorination kinetic rate constant decreased by 36% the most, under all nitrate concentration ranges, TCE could be completely removed within 32 h and no difference in generated metabolites was found, revealing the well-maintained dechlorination activity. This was due to the quickly enriched bio-denitrification activity, which removed nitrate completely within 9 h, and thus relieved the inhibition on TCE dechlorination. The obvious bacterial community structure succession was also observed, from dominating with dechlorination genera (e.g., Acetobacterium, Eubacterium) to dominating with both dechlorination and denitrification genera (e.g., Acidovorax and Brachymonas). The study proposed the great potential for the in situ simultaneous denitrification and dehalogenation in groundwater contaminated with both nitrate and VCHs.


Subject(s)
Groundwater , Hydrocarbons, Chlorinated , Trichloroethylene , Biodegradation, Environmental , Electric Stimulation , Groundwater/chemistry , Nitrates , Trichloroethylene/chemistry
2.
Environ Res ; 204(Pt A): 111979, 2022 03.
Article in English | MEDLINE | ID: mdl-34506782

ABSTRACT

The response of the denitrification community to long-term antibiotic exposure requires further investigation. Here, the significantly altered denitrifying community structure and function were observed by continuous exposure to 1 mg/L sulfamethoxazole (SMZ) or chlortetracycline (CTC) for 180 d in the expanded granular sludge bed reactors. Thaurea, positively correlated with SMZ and NO3- removal efficiency (NrE), was highly enriched in the SMZ-added reactor, while, Comamons and Acinetobacter were largely inhibited. The acute inhibited and then gradual-recovered NrE (87.17-90.38 %) was observed with highly expressed narG, indicating the adaptability of Thaurea to SMZ. However, the abundance of Thaurea and Comamonas greatly decreased, while Melioribacter and Acinetobacter were largely enriched in the CTC-added reactor. CTC created more serious and continuous inhibition of NO3- reduction (NrE of 64.53-66.95 %), with lowly expressed narG. Improved NO2- reduction capacity was observed in both reactors (70.16-95.42 %) with highly expressed nirS and nosZ, revealing the adaptability of NO2- reduction populations to antibiotics.


Subject(s)
Chlortetracycline , Denitrification , Bacteria , Bioreactors , Chlortetracycline/toxicity , Nitrogen , Sewage , Sulfamethoxazole/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...