Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Phytomedicine ; 130: 155723, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38815405

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurological disorder. There is a considerable unmet medical need among those suffering from it. HYPOTHESIS AND PURPOSE: Given the link between type-2 diabetes mellitus (T2DM) and AD, hypoglycemic traditional Chinese medicine formulas (TCMFs) may be a treatment for AD. We investigated the possibility of identifying anti-AD medicines in hypoglycemic TCMFs and presented another option for the screening of AD medications. STUDY DESIGN AND METHODS: Paralysis of the transgenic Caenorhabditis elegans (C. elegans) strain CL4176 (caused by amyloid beta (Aß)1-42 aggregates) was used to evaluate the anti-AD effect. The toxicity and neurodegeneration induced by neuronal expression of Aß in the transgenic C. elegans strain CL2355 were determined using a 5-hydroxytryptamine (5-HT) assay. The transgenic Aß-expressing strain CL 2006 and transgenic tau-expressing strain BR5270 were used to explore the effect of TCMFs on protein expression in C. elegans using ELISAs. Then, network pharmacology was used to determine the mechanism of action. The Traditional Chinese Medicine Inheritance Support System platform was used to investigate prescription patterns, core drugs, and optimum combinations of hypoglycemic TCMFs for AD. RESULTS: Sixteen hypoglycemic TCMFs prolonged the PT50 (half paralysis time) of the CL4176 strain of C. elegans, reduced the percentage of worms paralyzed. The results of network pharmacology showed that prostaglandin-endoperoxide synthase 2 (PTGS2) and acetylcholine esterase (AChE) are main targets of hypoglycemic TCMFs. Enriched pathway analysis showed that the cholinergic receptor-related pathway was the core pathway of hypoglycemic TCMFs. According to the "four qi and five flavors" system of TCM theory, the main pharmacological qualities were "cold" and "sweet." Through the analysis by TCMISS, we found that Huangqi-Gegen drug pair as the significant Chinese herbs of hypoglycemic TCMFs. The Huangqi-Gegen pairing had the most robust therapeutic effect when delivered at a 2:1 (v/v) ratio. It reduced the paralysis caused by 5-HT, decreased protein expression of AChE and PTGS2, and reduced Aß deposition in the brain of the CL2006 strain of C. elegans. CONCLUSIONS: Huangqi-Gegen is a promising treatment of AD, and its mechanism may be induced by suppressing the protein production of AChE and PTGS2, reducing 5-HT intake, and then decreasing Aß deposition.

2.
Sci Rep ; 14(1): 11185, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755275

ABSTRACT

The brain presents age-related structural and functional changes in the human life, with different extends between subjects and groups. Brain age prediction can be used to evaluate the development and aging of human brain, as well as providing valuable information for neurodevelopment and disease diagnosis. Many contributions have been made for this purpose, resorting to different machine learning methods. To solve this task and reduce memory resource consumption, we develop a mini architecture of only 10 layers by modifying the deep residual neural network (ResNet), named ResNet mini architecture. To support the ResNet mini architecture in brain age prediction, the brain age dataset (OpenNeuro #ds000228) that consists of 155 study participants (three classes) and the Alzheimer MRI preprocessed dataset that consists of 6400 images (four classes) are employed. We compared the performance of the ResNet mini architecture with other popular networks using the two considered datasets. Experimental results show that the proposed architecture exhibits generality and robustness with high accuracy and less parameter number.


Subject(s)
Aging , Brain , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Brain/diagnostic imaging , Brain/physiology , Aging/physiology , Magnetic Resonance Imaging/methods , Deep Learning , Aged , Alzheimer Disease/diagnostic imaging , Machine Learning , Female , Aged, 80 and over , Male , Middle Aged
3.
Adv Sci (Weinh) ; 11(20): e2306059, 2024 May.
Article in English | MEDLINE | ID: mdl-38528665

ABSTRACT

Tumor-initiating cells (TICs) resilience and an immunosuppressive microenvironment are aggressive oncogenic phenotypes that contribute to unsatisfactory long-term outcomes in lung adenocarcinoma (LUAD) patients. The molecular mechanisms mediating the interaction between TICs and immune tolerance have not been elucidated. The role of Galectin-9 in oncogenesis and immunosuppressive microenvironment is still unknown. This study explored the potential role of galectin-9 in TIC regulation and immune modulation in LUAD. The results show that galectin-9 supports TIC properties in LUAD. Co-culture of patient-derived organoids and matched peripheral blood mononuclear cells showed that tumor-secreted galectin-9 suppressed T cell cytotoxicity and induced regulatory T cells (Tregs). Clinically, galectin-9 is upregulated in human LUAD. High expression of galectin-9 predicted poor recurrence-free survival and correlated with high levels of Treg infiltration. LGALS9, the gene encoding galectin-9, is found to be transcriptionally regulated by the nuclear factor of activated T cells 2 (NFATc2), a previously reported TIC regulator, via in silico prediction and luciferase reporter assays. Overall, the results suggest that the NFATc2/galectin-9 axis plays a dual role in TIC regulation and immune suppression.


Subject(s)
Adenocarcinoma of Lung , Galectins , Lung Neoplasms , NFATC Transcription Factors , Neoplastic Stem Cells , Phenotype , Humans , Galectins/genetics , Galectins/metabolism , Galectins/immunology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Cell Line, Tumor
4.
Transl Neurodegener ; 12(1): 58, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093327

ABSTRACT

BACKGROUND: The γ-aminobutyric acid (GABA) hypothesis posits a role of GABA deficiency in the central nervous system in the pathogenesis and progression of essential tremor (ET). However, the specific causative factor for GABA deficiency is not clear. The gut microbiota in mammals has recently been considered as a significant source of GABA. Furthermore, the GABA-based signals originating from the intestine can be transmitted to the brain through the "enteric nervous system-vagus nerve-brain" axis. However, the plausible contribution of gut microbiota to ET seems inspiring but remains obscure. METHODS: Fecal samples from patients with ET and healthy controls were examined by metagenomic sequencing to compare the composition of gut microbiota and the expression of genes involved in GABA biosynthesis. The impact of gut microbiota on ET was explored through transplantation of fecal microbiota from patients with ET into the murine ET model. Lactic acid bacteria producing high amounts of GABA were identified through whole-genome sequencing and ultra-performance liquid chromatography-tandem mass spectrometry. Subsequently, mice were treated with the high-GABA-producing strain Lactobacillus plantarum L5. Tremor severity, behavioral tests, pro-inflammatory cytokines, GABA concentration, and gut microbiota composition were examined in these mice. RESULTS: The gut microbiota of patients with ET demonstrated an impaired GABA-producing capacity and a reduced fecal GABA concentration. Transplantation of the gut microbiota from patients with ET induced an extension of tremor duration and impaired mobility in the murine model of ET. L5 exhibited an augmented GABA-producing capacity, with the De Man-Rogosa-Sharpe culture broth containing 262 mg/l of GABA. In addition, administration of L5 significantly decreased the tremor severity and enhanced the movement capability and grasping ability of ET mice. In vivo mechanistic experiments indicated that L5 reshaped the gut microbial composition, supplemented the mucosa-associated microbiota with GABA-producing capacity, increased the GABA concentrations in the cerebellum, and diminished inflammation in the central nervous system. CONCLUSIONS: These findings highlight that deficiency of GABA-producing gut microbes plays an essential role in the pathogenesis of ET and that L5 is a promising candidate for treating ET.


Subject(s)
Essential Tremor , Lactobacillus plantarum , Humans , Mice , Animals , Lactobacillus plantarum/genetics , Tremor , Bacteria , gamma-Aminobutyric Acid , Dietary Supplements , Mammals
5.
Front Microbiol ; 14: 1320567, 2023.
Article in English | MEDLINE | ID: mdl-38125567

ABSTRACT

Introduction: Gut microbiota and metabolites have been identified to contribute to the pathogenesis of functional constipation (FC); however, the underlying mechanism(s) have not been elucidated, and the relationship between the gut microbiota and metabolites in FC has received limited attention in the literature. Methods: 16S rDNA sequencing and non-targeted metabolomic detection based on liquid chromatography-mass spectrometry (LC-MS/MS) technologies were combined to analyze the altered gut microbiome and metabolic profile of fecal samples from FC patients and healthy individuals (healthy control; HC). Results: The richness and diversity of gut microbiota significantly (p < 0.01) increased in FC patients. Compared to the HC group, 18 genera, including Intestinibacter, Klebsiella, and Akkermansia, exhibited statistically significant changes (p < 0.05). Metabolic analysis showed that metabolic profiles were also markedly altered with 79 metabolites, such as (-)-caryophyllene oxide, chenodeoxycholic acid, and biliverdin, indicating significant inter-group differences (p < 0.05). Besides, the primary bile acid biosynthesis, as well as the metabolic profile of porphyrin and chlorophyll, were the most dominant enriched pathways (FDR < 0.01), in which chenodeoxycholic acid and biliverdin were significantly enriched, respectively. Correlation analysis demonstrated a strong relationship between 10 genera and 19 metabolites (r > 0.6, FDR < 0.05), and notably, Intestinibacter showed a negative correlation with biliverdin (FDR < 0.001), which highlighted the interplay of the gut microbiota and metabolites in the pathogenesis of FC. Conclusion: Our research describes the characteristics of the gut microbiota and metabolic profiles and the correlation between the gut microbiota and metabolites in FC patients. This may contribute to the understanding of the underlying mechanisms involved in FC pathogenesis and may provide novel insights into therapeutic interventions.

6.
Biomed Pharmacother ; 169: 115921, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38011787

ABSTRACT

Cryptotanshinone (CPT), a bioactive compound derived from the traditional Chinese herb Salvia miltiorrhiza, exhibits promising antidepressant properties. Employing a rat model subjected to Chronic Unpredictable Mild Stress (CUMS), behavioral analyses (open field experiment, elevated cross maze experiment, sugar water preference experiment, forced swimming experiment) and inflammatory factor assessments were conducted to assess the efficacy of CPT in alleviating depressive symptoms and inflammatory responses induced by CUMS. Moreover, 16 S rDNA analysis revealed alterations in the gut microbiota of rats exposed to both CUMS and CPT administration. Notably, CPT administration was found to mitigate harmful bacterial shifts associated with depression. Preliminary exploration of the molecular mechanism underlying CPT's antidepressant effects via transcriptomics analysis and molecular docking indicated that CPT might exert its influence by regulating the PI3K-AKT pathway. This study sheds light on the potential therapeutic role of CPT in managing depressive disorders, offering a comprehensive understanding of its impact on behavior, inflammation, gut microbiota, and molecular pathways.


Subject(s)
Depression , Gastrointestinal Microbiome , Rats , Animals , Depression/drug therapy , Depression/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Hippocampus , Disease Models, Animal
7.
Brain Res Bull ; 203: 110770, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37774988

ABSTRACT

OBJECTION: To investigate the potential link between aberrant mitochondrial energy metabolism mediated by the AMPK/SIRT1 pathway and the etiology of anxiety disorders. METHODS: The anxiety rat model was established by uncertain empty water bottle(UEWB)stress. Rats were submitted behavioral tests on the seventh, fourteenth, and twenty-first days and had the prefrontal cortex and amygdala removed for biochemical tests. The morphological alterations of the mitochondria in the medial prefrontal cortex and amygdala were examined by using a transmission electron microscope. Expression levels of AMPK, SIRT1, PGC-1, NRF-1 and NRF-2 were tested by western-blot analysis. ATP, respiratory chain complex and caspase enzyme expressions were tested by neurochemical and biochemical assays. RESULTS: Rats showed anxiety-like behavior after being exposed to the uncertain empty water bottle (UEWB) stress model. In model rats, mitochondrial structure is damaged, mitochondrial energy metabolism is decreased, and the expression of proteins associated with AMPK/SIRT1 pathway is significantly reduced in the brain. CONCLUSION: The level of mitochondrial energy metabolism correlates with anxiety-like behavior. The main mechanism of anxiety disorder is a disturbance of mitochondrial energy metabolism, which might be related to AMPK/SIRT1 pathway.


Subject(s)
AMP-Activated Protein Kinases , Sirtuin 1 , Rats , Animals , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Energy Metabolism , Signal Transduction
8.
Chemosphere ; 340: 139933, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37625492

ABSTRACT

Salinization in freshwater lakes is becoming a serious global environmental problem, especially in lakes of plateaus such as south-western plateau of China. However, limited information is available about the molecular response of freshwater hydrophytes to salinity under multiple stress. In the present study, a weighted gene co-expression network (WGCNA) was used to identify the modules of co-expressed genes in the physiological and biochemical indicators of Pistia stratiotes to determine its molecular response to salinity (NaCl) alone and when combined with cadmium (Cd). The physiological and biochemical indicators showed that P. stratiotes improved its salt tolerance by enhancing photosynthetic abilities, reducing oxidative stress, and inducing osmoprotectant generation. Morever, addition of NaCl reduced the Cd accumulation in P. stratiotes. Transcriptome and WGCNA analysis revealed that the pathways of alpha-linolenic acid metabolism, ribosomal, flavonoid biosynthesis, and phenylpropanoid biosynthesis were significantly enriched in both treatments. Genes associated with photosynthesis-antenna proteins, nitrogen metabolism, and the acid cycle pathways were only expressed under salinity stress alone, while the proteasome pathway was only significantly enriched in the combined salinity and Cd treatment. Our findings provide novel insights into the effects of salinization on aquatic plants in freshwater ecosystems and the management of aquatic ecosystems under global change.


Subject(s)
Cadmium , Hydrocharitaceae , Cadmium/toxicity , Ecosystem , Salinity , Sodium Chloride , Lakes
9.
Nat Med ; 29(6): 1424-1436, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37280275

ABSTRACT

Gemcitabine plus cisplatin (GP) chemotherapy is the standard of care for nasopharyngeal carcinoma (NPC). However, the mechanisms underpinning its clinical activity are unclear. Here, using single-cell RNA sequencing and T cell and B cell receptor sequencing of matched, treatment-naive and post-GP chemotherapy NPC samples (n = 15 pairs), we show that GP chemotherapy activated an innate-like B cell (ILB)-dominant antitumor immune response. DNA fragments induced by chemotherapy activated the STING type-I-interferon-dependent pathway to increase major histocompatibility complex class I expression in cancer cells, and simultaneously induced ILB via Toll-like receptor 9 signaling. ILB further expanded follicular helper and helper type 1 T cells via the ICOSL-ICOS axis and subsequently enhanced cytotoxic T cells in tertiary lymphoid organ-like structures after chemotherapy that were deficient for germinal centers. ILB frequency was positively associated with overall and disease-free survival in a phase 3 trial of patients with NPC receiving GP chemotherapy ( NCT01872962 , n = 139). It also served as a predictor for favorable outcomes in patients with NPC treated with GP and immunotherapy combined treatment (n = 380). Collectively, our study provides a high-resolution map of the tumor immune microenvironment after GP chemotherapy and uncovers a role for B cell-centered antitumor immunity. We also identify and validate ILB as a potential biomarker for GP-based treatment in NPC, which could improve patient management.


Subject(s)
Cisplatin , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Cisplatin/therapeutic use , Gemcitabine , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/etiology , Nasopharyngeal Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Deoxycytidine/therapeutic use , Tumor Microenvironment
10.
11.
Gerontology ; 69(9): 1076-1094, 2023.
Article in English | MEDLINE | ID: mdl-37348478

ABSTRACT

INTRODUCTION: Attenuating cardiac fibroblasts activation contributes to reducing excessive extracellular matrix deposition and cardiac structural remodeling in hypertensive hearts. Acacetin plays a protective role in doxorubicin-induced cardiomyopathy and ischemia/reperfusion injury. The aim of this study was to investigate the potential molecular mechanisms underlying the protective role of acacetin on hypertension-induced cardiac fibrosis. METHODS: Echocardiography, histopathological methods, and Western blotting techniques were used to evaluate the anti-fibrosis effects in spontaneous hypertensive rat (SHR) which were daily intragastrically administrated with acacetin (10 mg/kg and 20 mg/kg) for 6 weeks. Angiotensin II (Ang II) was used to induce cellular fibrosis in human cardiac fibroblasts (HCFs) in the absence and presence of acacetin treatment for 48 h. RESULTS: Acacetin significantly alleviated hypertension-induced increase in left ventricular (LV) posterior wall thickness and LV mass index in SHR. The expressions of collagen-1, collagen-III, and alpha-smooth muscle actin (α-SMA) were remarkedly decreased after treatment with acacetin (n = 6, p < 0.05). In cultured HCFs, acacetin significantly attenuated Ang II-induced migration and proliferation (n = 6, p < 0.05). Moreover, acacetin substantially inhibited Ang II-induced upregulation of collagen-1 and collagen-III (n = 6, p < 0.05) and downregulated the expression of alpha-SMA in HCFs. Additionally, acacetin decreased the expression of TGF-ß1, p-Smad3/Smad3, and p-AKT and p-mTOR but increased the expression of Smad7 (n = 6, p < 0.05). Further studies found that acacetin inhibited TGF-ß1 agonist SRI and AKT agonist SC79 caused fibrotic effect. CONCLUSION: Acacetin inhibits the hypertension-associated cardiac fibrotic processes through regulating TGF-ß/Smad3, AKT/mTOR signal transduction pathways.


Subject(s)
Cardiomyopathies , Hypertension , Humans , Rats , Animals , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Myocardium/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Signal Transduction , Collagen/metabolism , Collagen/pharmacology , Collagen Type I/metabolism , Collagen Type I/pharmacology , Hypertension/drug therapy , TOR Serine-Threonine Kinases , Fibroblasts/pathology , Fibrosis
12.
Plants (Basel) ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37375866

ABSTRACT

As a component of the MAP project, the study of the flora in Northeast Asia (comprising Japan, South Korea, North Korea, Northeast China, and Mongolia) convincingly underscores the indispensability of precise and comprehensive diversity data for flora research. Due to variations in the description of flora across different countries in Northeast Asia, it is essential to update our understanding of the region's overall flora using the latest high-quality diversity data. This study employed the most recently published authoritative data from various countries to conduct a statistical analysis of 225 families, 1782 genera, and 10,514 native vascular species and infraspecific taxa in Northeast Asia. Furthermore, species distribution data were incorporated to delineate three gradients in the overall distribution pattern of plant diversity in Northeast Asia. Specifically, Japan (excluding Hokkaido) emerged as the most prolific hotspot for species, followed by the Korean Peninsula and the coastal areas of Northeast China as the second richest hotspots. Conversely, Hokkaido, inland Northeast China, and Mongolia constituted species barren spots. The formation of the diversity gradients is primarily attributed to the effects of latitude and continental gradients, with altitude and topographic factors within the gradients modulating the distribution of species.

13.
J Res Med Sci ; 28: 37, 2023.
Article in English | MEDLINE | ID: mdl-37213447

ABSTRACT

Background: The prognosis of and occurrence of complications in patients with different clinical features of cirrhosis differ, and cirrhosis with different etiologies has varying clinical characteristics. The aim of this study was to describe the liver function markers, hepatic complications, and psychological features differentiating patients with hepatitis B virus (HBV) infection-related and alcohol-related cirrhosis. Materials and Methods: This was a retrospective and observational study that analyzed the medical data of inpatients with alcohol-related or HBV infection-related cirrhosis from May 2014 to May 2020. Markers of liver function, portal hypertension, and psychological symptoms were compared between the two groups. Results: Patients with alcohol-related cirrhosis showed higher Self-Rating Anxiety Scale scores and prevalence of hypoproteinemia, fatty liver, and depression than those with HBV infection-related cirrhosis (all P < 0.05). After adjustment for potential confounders, patients with alcohol-related cirrhosis also showed higher risks of increased total cholesterol (odds ratio [OR] =2.671, 95% confidence interval [CI]: 1.160-6.151, P = 0.021), increased high-density lipoprotein-cholesterol (OR = 2.714, 95% CI: 1.009-7.299, P = 0.048), and fatty liver (OR = 2.713, 95% CI: 1.002-7.215, P = 0.048); however, splenomegaly and splenectomy were significantly associated with HBV infection-related cirrhosis (OR = 2.320, 95% CI: 1.066-5.050, P = 0.034). Conclusion: Patients with alcohol-related cirrhosis were more likely to develop hyperlipidemia, fatty liver, and psychological symptoms, whereas those with HBV-related cirrhosis had a higher risk of splenomegaly.

14.
Cell Biosci ; 13(1): 94, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221631

ABSTRACT

BACKGROUND: Spermatogenic dysfunction is an important cause of azoospermia. Numerous studies have focused on germ-cell-related genes that lead to spermatogenic impairment. However, based on the immune-privileged characteristics of the testis, the relationship of immune genes, immune cells or immune microenvironment with spermatogenic dysfunction has rarely been reported. RESULTS: Using integrated methods including single-cell RNA-seq, microarray data, clinical data analyses and histological/pathological staining, we found that testicular mast cell infiltration levels were significantly negatively related to spermatogenic function. We next identified a functional testicular immune biomarker, CCL2, and externally validated that testicular CCL2 was significantly upregulated in spermatogenic dysfunctional testes and was negatively correlated with Johnsen scores (JS) and testicular volumes. We also demonstrated that CCL2 levels showed a significant positive correlation with testicular mast cell infiltration levels. Moreover, we showed myoid cells and Leydig cells were two of the important sources of testicular CCL2 in spermatogenic dysfunction. Mechanistically, we drew a potential "myoid/Leydig cells-CCL2-ACKR1-endothelial cells-SELE-CD44-mast cells" network of somatic cell-cell communications in the testicular microenvironment, which might play roles in spermatogenic dysfunction. CONCLUSIONS: The present study revealed CCL2-relevant changes in the testicular immune microenvironment in spermatogenic dysfunction, providing new evidence for the role of immunological factors in azoospermia.

15.
Dig Dis ; 41(4): 632-640, 2023.
Article in English | MEDLINE | ID: mdl-37019089

ABSTRACT

INTRODUCTION: Anemia is a common manifestation of chronic liver diseases. It is a predictor of severe disease, a high risk of complications, and poor outcomes in various liver diseases. However, it remains unclear whether anemia serves as a similar indicator in patients with Wilson disease (WD). Therefore, this study aimed to investigate the relationship between anemia and severity, hepatic complications, and the progression of WD. METHODS: Medical data were collected retrospectively from January 1, 2016, to December 31, 2020. Univariate and multivariate analyses were carried out to investigate the relationship between anemia and liver-associated disease severity, hepatic complications, and the progression of WD. RESULTS: A total of 288 WD patients (48 with and 240 without anemia) were enrolled in the study. Multivariate linear regression revealed that WD patients with anemia had significantly higher levels of bilirubin, alanine transaminase, prothrombin time, international normalized ratio, type Ⅳ collagen, and hyaluronic acid and significantly lower levels of albumin, total cholesterol, and high-density lipoprotein-cholesterol (all p < 0.05). Multivariate logistic regression showed that anemia was a risk factor for gastric varices and ascites (all p < 0.05). Fully adjusted Cox regression revealed that anemia was an independent risk factor for advanced Child-Pugh classification (p = 0.034). CONCLUSIONS: Anemia was common in WD patients and was associated with greater disease severity, a higher risk of hepatic complications, and a faster progression.


Subject(s)
Anemia , Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/complications , Retrospective Studies , Liver Cirrhosis/complications , Patient Acuity , Anemia/complications , Cholesterol
16.
Neural Regen Res ; 18(10): 2147-2155, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37056122

ABSTRACT

Remyelination failure is one of the main characteristics of multiple sclerosis and is potentially correlated with disease progression. Previous research has shown that the extracellular matrix is associated with remyelination failure because remodeling of the matrix often fails in both chronic and progressive multiple sclerosis. Fibronectin aggregates are assembled and persistently exist in chronic multiple sclerosis, thus inhibiting remyelination. Although many advances have been made in the mechanisms and treatment of multiple sclerosis, it remains very difficult for drugs to reach pathological brain tissues; this is due to the complexity of brain structure and function, especially the existence of the blood-brain barrier. Therefore, herein, we review the effects of fibronectin aggregates on multiple sclerosis and the efficacy of different forms of drug delivery across the blood-brain barrier in the treatment of this disease.

17.
Front Microbiol ; 14: 1158163, 2023.
Article in English | MEDLINE | ID: mdl-37032875

ABSTRACT

Introduction: The ongoing 2019 coronavirus disease pandemic (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, is a global public health threat. Early diagnosis and identification of SARS-CoV-2 and its variants plays a critical role in COVID-19 prevention and control. Currently, the most widely used technique to detect SARS-CoV-2 is quantitative reverse transcription real-time quantitative PCR (RT-qPCR), which takes nearly 1 hour and should be performed by experienced personnel to ensure the accuracy of results. Therefore, the development of a nucleic acid detection kit with higher sensitivity, faster detection and greater accuracy is important. Methods: Here, we optimized the system components and reaction conditions of our previous detection approach by using RT-RAA and Cas12b. Results: We developed a Cas12b-assisted one-pot detection platform (CDetection.v2) that allows rapid detection of SARS-CoV-2 in 30 minutes. This platform was able to detect up to 5,000 copies/ml of SARS-CoV-2 without cross-reactivity with other viruses. Moreover, the sensitivity of this CRISPR system was comparable to that of RT-qPCR when tested on 120 clinical samples. Discussion: The CDetection.v2 provides a novel one-pot detection approach based on the integration of RT-RAA and CRISPR/Cas12b for detecting SARS-CoV-2 and screening of large-scale clinical samples, offering a more efficient strategy for detecting various types of viruses.

18.
PLoS One ; 18(4): e0284347, 2023.
Article in English | MEDLINE | ID: mdl-37058478

ABSTRACT

Lung cancer is a malignant tumor with high rates of mortality and shows significant hereditary predisposition. Previous genome-wide association studies suggest that rs748404, located at promoter of TGM5 (transglutaminase 5), is associated with lung carcinoma. By analysis of 1000 genomes project data for three representative populations in the world, another five SNPs are identified to be in strong linkage disequilibrium with rs748404, thus suggesting that they may also be associated with lung carcinoma risk. However, it is ambiguous about the actually causal SNP(s) and the mechanism for the association. Dual-luciferase assay indicates that the functional SNPs are not rs748404, rs12911132 or rs35535629 but another three SNPs (rs66651343, rs12909095 and rs17779494) in lung cell. By chromosome conformation capture, it is disclosed that the enhancer encompassing the two SNPs, rs66651343 and rs12909095, can interact with the promoter of CCNDBP1 (cyclin D1 binding protein 1). RNA-seq data analysis indicates that CCNDBP1 expression is dependent on the genotype of these two SNPs. Chromatin immunoprecipitation assay suggests that the fragments spanning rs66651343 and rs12909095 can bind with the transcription factors, cut like homeobox 1 and SRY-box transcription factor 9, respectively. Our results establish the connection between genetic variations at this locus and lung cancer susceptibility.


Subject(s)
Carcinoma , Lung Neoplasms , Humans , Carcinoma/pathology , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Polymorphism, Single Nucleotide
19.
Materials (Basel) ; 16(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903000

ABSTRACT

In this paper, a hot processing map that takes into the strengthening effect into account is optimized for the Al-10.0Zn-3.0Mg-2.8Cu alloy, mainly considering the crushing and dissolving behavior of the insoluble phase. The hot deformation experiments were performed by compression testing with strain rates ranging from 0.001 to 1 s-1 and the temperature ranging from 380 to 460 °C. The hot processing map was established at the strain of 0.9. It exhibits that the appropriate hot processing region is located at the temperature from 431 to 456 °C and its strain rate is within 0.004-0.108 s-1. The recrystallization mechanisms and insoluble phase evolution were demonstrated using the real-time EBSD-EDS detection technology for this alloy. It is verified that the work hardening can also be consumed by the coarse insoluble phase refinement with the strain rate increasing from 0.001 to 0.1 s-1, besides the traditional recovery and recrystallization, but the effect of the insoluble phase crushing was weakened when strain rate increased over 0.1 s-1. Better refinement of the insoluble phase was around strain rate in 0.1 s-1, which exhibits adequate dissolving during the solid solution treatment, leading to excellent aging strengthen effects. Finally, the hot processing region was further optimized, so that the strain rate approaches 0.1 s-1 instead of 0.004-0.108 s-1. This will provide a theoretical support for the subsequent deformation of the Al-10.0Zn-3.0Mg-2.8Cu alloy and its' engineering application in aerospace, defense and military fields.

20.
Environ Pollut ; 320: 121101, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36669720

ABSTRACT

Understanding particle size distribution and size-resolved gas-particle partitioning of semi-volatile organic compounds (SVOCs) is important for characterizing their fate in atmosphere. However, the size-resolved gas-particle partitioning characteristics of SVOCs has not been adequately considered. To address this issue, the present study collected gaseous and size-fractioned particulate samples both in and outside of schools, offices, and residences in three districts of different urbanization levels in a megacity, Guangzhou, South China during two seasons. Typical SVOCs, including 15 polycyclic aromatic hydrocarbons (PAHs), six organophosphate esters and seven phthalic acid esters were measured. Emission sources, physicochemical properties, and environmental conditions at the sampling sites considerably impacted the spatiotemporal distribution patterns and particle size distribution of target SVOCs. Not all observed gas-particle partition coefficients (Kp) of target SVOCs were negatively correlated with subcooled liquid-vapor pressures (PL0), probably because certain factors, such as the non-exchangeable part of the particle-bound SVOCs, were not considered in traditional gas-particle partition theories. Particle size was an important factor affecting gas-particle partitioning. Adsorption was the dominant mechanism for PAHs with high molecular weight in different particle modes. A new model was established to predict size-resolved Kp of PAHs with high molecular weight based on PL0 and particle size.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Particle Size , Atmosphere/chemistry , China , Gases/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...