Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Ultrason Sonochem ; 65: 105060, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32199255

ABSTRACT

This work investigated and compared the dynamic cavitation characteristics between low and high boiling-point phase-shift nanodroplets (NDs) under physiologically relevant flow conditions during focused ultrasound (FUS) exposures at different peak rarefactional pressures. A passive cavitation detection (PCD) system was used to monitor cavitation activity during FUS exposure at various acoustic pressure levels. Root mean square (RMS) amplitudes of broadband noise, spectrograms of the passive cavitation detection signals, and normalized inertial cavitation dose (ICD) values were calculated. Cavitation activity of low-boiling-point perfluoropentane (PFP) NDs and high boiling-point perfluorohexane (PFH) NDs flowing at in vitro mean velocities of 0-15 cm/s were compared in a 4-mm diameter wall-less vessel in a transparent tissue-mimicking phantom. In the static state, both types of phase-shift NDs exhibit a sharp rise in cavitation intensity during initial FUS exposure. Under flow conditions, cavitation activity of the PFH NDs reached the steady state less rapidly compared to PFP NDs under the lower acoustic pressure (1.35 MPa); at the higher acoustic pressure (1.65 MPa), the RMS amplitude increased more sharply during the initial FUS exposure period. In particular, the RMS-time curves of the PFP NDs shifted upward as the mean flow velocity increased from 0 to 15 cm/s; the RMS amplitude of the PFH ND solution increased from 0 to 10 cm/s and decreased at 15 cm/s. Moreover, amplitudes of the echo signal for the low boiling-point PFP NDs were higher compared to the high boiling-point PFH NDs in the lower frequency range, whereas the inverse occurred in the higher frequency range. Both PFP and PFH NDs showed increased cavitation activity in the higher frequency under the flow condition compared to the static state, especially PFH NDs. At 1.65 MPa, normalized ICD values for PFH increased from 0.93 ± 0.03 to 0.96 ± 0.04 and from 0 to 10 cm/s, then decreased to 0.86 ± 0.05 at 15 cm/s. This work contributes to our further understanding of cavitation characteristics of phase-shift NDs under physiologically relevant flow conditions during FUS exposure. In addition, the results provide a reference for selecting suitable phase-shift NDs to enhance the efficiency of cavitation-mediated ultrasonic applications.

2.
J Voice ; 34(6): 813-822, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31311664

ABSTRACT

Acoustic differences in the phonated sounds made by men and women are related to laryngeal and vocal tract structural differences. This model-based study explored how typical vocal fold differences between males and females affect intraglottal pressure distributions under conditions of different glottal angles and transglottal pressures, and thus how they may affect phonation. The computational code ANSYS Fluent 6.3 was used to obtain the pressure distributions and other aerodynamic parameters for laminar, incompressible flow. Typical values of the vocal fold length, the vertical glottal duct length, and the lateral vocal fold tissue depth were selected both for males and females under conditions of nine typical convergent/divergent glottal angles and three transglottal pressures. There was no coupling of the upstream or downstream vocal tracts, and also no vocal fold contact in these two-dimensional static glottal geometries. Results suggest that males tend to have greater intraglottal pressures for the convergent glottal shape that occurs during glottal opening, and the male glottis offers less flow resistance than the female glottis. These results suggest that the male vocal folds may vibrate more easily (ie, with lower transglottal pressure) but the tissue differences may nullify such an hypothesis. Also, the peak velocities in the glottis were dependent on the transglottal pressure driving the flow and the minimal glottal diameter, which were the same for both the male and female larynxes, rather than on the inferior-superior length of the glottis or the anterior-posterior glottal length. In addition, the tangential forces for larger glottal convergent angles was significantly greater in the female larynx. The entrance loss coefficients, however, were similar between the male and female larynxes, except for the uniform glottis for which the values were larger for the male larynx. The results suggest that the structural differences between male and female vocal folds should be well specified when building computational and physical models of the larynx.


Subject(s)
Larynx , Phonation , Female , Glottis , Humans , Male , Models, Biological , Pressure , Vocal Cords
3.
Ultrason Sonochem ; 53: 59-67, 2019 May.
Article in English | MEDLINE | ID: mdl-30559082

ABSTRACT

Inertial cavitation is crucial for the therapeutic effects of sonodynamic. Therefore, approaches that can induce highly efficient inertial cavitation should be of benefit for sonodynamic effect. Our previous study demonstrated that highly efficient inertial cavitation activity can be achieved through the combinatorial use of a short-pulsed focused ultrasound (SPFU) sequence and perfluorohexane (PFH) nanodroplets. Herein, we applied the SPFU sequence and PFH nanodroplets in sonodynamic. A hydrophobic sonosensitizer, IR780 iodine, was loaded inside denatured bovine serum albumin-shelled PFH (PFH@BSA-IR780) nanodroplets. The sonodynamic efficacy was validated by treating HeLa cervical cancer cells. Under SPFU exposure, PFH@BSA-IR780 nanodroplets were highly effective in promoting reactive oxygen species generation and inducing cancer cell death. A significant decrease in cell viability was achieved within just 10 s. Besides the cytotoxicity of ROS, the mechanical bioeffects of inertial cavitation also led to severe cell death resulting from higher acoustic power or the longer treatment time. The application of the SPFU sequence coupled with PFH@BSA-IR780 nanodroplets is a promising strategy for efficient sonodynamic.

4.
Ultrason Sonochem ; 48: 532-537, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30080582

ABSTRACT

In this work, in order to develop a low-acoustic-intensity, high-efficiency and precise-treatment strategy, the vaporization of droplets and the inertial cavitation of vaporized microbubbles, using a dual-frequency focused ultrasound transducer, were investigated. The effect of a low frequency (LF), 1.1-MHz, sonication on droplet vaporization and the following inertial cavitation by the introduction of a high frequency (HF), 5-MHz, sonication was studied. It is shown that acoustic droplet vaporization (ADV) threshold is the lowest at dual-frequency sonication (LF of 18.9 W/cm2 and HF of 4.1 W/cm2); moreover, the ADV efficiency is the highest at intensity threshold. The ADV area can be minimized to 2 mm2 using a dual-frequency sonication (LF of 38.1 W/cm2 and HF of 8.5 W/cm2). The IC area and efficiency can also be modulated using a dual-frequency sonication. Consequently, it can be concluded that in contrast to the single-frequency sonication, using the dual-frequency ultrasound, the vaporization of nanodroplets and the following inertial cavitation of the vaporized microbubbles can be modulated. Besides, a dual-frequency can result in the minimum ADV/IC area, lowest ADV/IC threshold, and highest ADV/IC efficiency.

5.
Med Phys ; 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30019761

ABSTRACT

PURPOSE: Improvement of both the imaging resolution and the contrast-to-tissue ratio (CTR) is a current emphasis of contrast-enhanced ultrasound (CEUS) for microvascular perfusion imaging. Based on the strong nonlinear characteristics of contrast agents, the CTRs have been significantly enhanced using various advanced CEUS methods. However, the imaging resolution of these methods is limited by the finite bandwidth of the imaging process. This study aimed to propose a bubble-echo based deconvolution (BED) method for CEUS with both improved resolution and CTR. METHOD: The method is built on a modified convolution model and uses novel bubble-echo based point-spread-functions to reconstruct the images by regularized inverse Wiener filtering. Performances of the proposed BED for three CEUS modes are investigated through simulations and in vivo perfusion experiments. RESULTS: BED of fundamental imaging was found to have the highest improvement in imaging resolution with the resolution gain up to 2.0 ± 0.2 times, which was comparable to the approved cepstrum-based deconvolution (CED). BED of second-harmonic imaging had the best performance in CTR with an enhancement of 9.8 ± 2.3 dB, which was much higher than CED. Pulse inversion BED had both a better resolution and a higher CTR. CONCLUSION: All results indicate that BED could obtain CEUS image with both an improved resolution and a high CTR, which has important significance to microvascular perfusion evaluation in deep tissue.

6.
J Acoust Soc Am ; 143(5): EL425, 2018 05.
Article in English | MEDLINE | ID: mdl-29857726

ABSTRACT

In order to investigate the vibration pattern, especially the vibrational phase of tissue beneath the vocal fold mucosa, an imaging method called electroglottogram-triggered ultrasonography is proposed. The ultrasonic images of the vocal fold vibration are obtained in the coronal plane from five adult subjects during phonation. The velocity of the vocal fold tissue beneath the mucosal surface is obtained by using a motion estimation method. The results show that the vibration phase difference between tissues at different locations beneath the vocal fold mucosa results in a mechanical wave traveling upward at a speed of 720 to 1826 mm/s.


Subject(s)
Electromagnetic Phenomena , Phonation/physiology , Vibration , Vocal Cords/diagnostic imaging , Vocal Cords/physiology , Adult , Female , Glottis/diagnostic imaging , Glottis/physiology , Humans , Male , Ultrasonography/methods , Young Adult
7.
Ultrason Sonochem ; 45: 57-64, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29705325

ABSTRACT

A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration.


Subject(s)
Fluorocarbons/chemistry , High-Intensity Focused Ultrasound Ablation , Nanostructures , Temperature , Feasibility Studies , Luminescence , Phantoms, Imaging , Photography , Serum Albumin, Bovine/chemistry , Surface-Active Agents/chemistry
8.
Med Phys ; 45(6): 2509-2517, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29611197

ABSTRACT

PURPOSE: This study aimed to clarify the influences of composite dynamic contrast-enhanced ultrasound (DCEUS) on multiparametric perfusion imaging (PPI) and to develop a novel PPI scheme through pulse-inversion Bubblet decorrelation (PIBD) to improve its contrast and detailed discriminability. METHOD: In in vivo perfusion experiments on rabbit kidneys, a pair of phase-inverted "Bubblets" was constructed. Phase-inverted raw radiofrequency echoes were reconstructed by using the maximum coefficients obtained from Bubblet decorrelation analysis and summed to form DCEUS loops. Nine perfusion parameters were estimated from these loops and color coded to create the corresponding PIBD-based PPIs. RESULTS: In addition to time-related PPIs, the contrast and detailed discriminability quantified by the average contrast and information entropy of intensity- and ratio-related PPIs were proportional to the microbubble detection sensitivity and microvascular discriminability evaluated by CTR in DCEUS techniques. Compared with the second harmonic, the CTR of DCEUS and the average contrast and information entropy of PPI were significantly improved by 9.03 ± 5.39 dB (P < 0.01), 6.39 ± 1.38 dB (P < 0.01), and 0.57 ± 0.15 (P < 0.05) in PIBD technique, respectively. CONCLUSIONS: As a multiparametric functional imaging technique, these improvements in the proposed scheme can be beneficial to accurately quantify and depict the hemodynamic perfusion features and details of tumor angiogenesis, and further can also assist clinicians in making a confirmed diagnosis.


Subject(s)
Contrast Media , Perfusion Imaging/methods , Ultrasonography/methods , Animals , Hemodynamics , Image Processing, Computer-Assisted/methods , Kidney/blood supply , Kidney/diagnostic imaging , Microbubbles , Microvessels/diagnostic imaging , Rabbits
9.
Med Phys ; 45(5): 2119-2128, 2018 May.
Article in English | MEDLINE | ID: mdl-29574795

ABSTRACT

PURPOSE: The accuracy of multi-parametric perfusion imaging (PPI) based on dynamic contrast-enhanced ultrasound is disturbed by the respiratory motion in some cases, especially during characterizing hemodynamic features of abdominal tumor angiogenesis. This study aimed to effectively remove those disturbances on PPI and evaluate its accuracy. METHOD: The respiratory motion-compensation (rMoCo) strategy in PPI was modified by employing non-negative matrix factorization combined with phase-by-phase compensation. According to the known and controllable ground truths in in-vitro perfusion experiments, the accuracy of the modified rMoCo strategy was further evaluated from multiple perspectives in a simulated dual-vessel flow phantom. RESULTS: Compared with that of PPIs without rMoCo, the mean correlation coefficient between six PPIs with rMoCo and the corresponding static PPIs was up to 0.98 ± 0.01 and improved by 0.17 ± 0.04 (P < 0.05). The estimated error of vascular diameter decreased from 87.85% (P < 0.05) to 7.25% (P < 0.05) after rMoCo. PPIs with rMoCo were significantly consistent with static PPIs without respiratory motion disturbances. CONCLUSIONS: These quantitative results illustrated the disturbances induced by respiratory motion were effectively removed and the accuracy of PPIs was significantly improved. The partial parabolic and bimodal hemodynamic characteristics and the anatomical structures and sizes were accurately quantified and depicted by PPIs with rMoCo. The modified method can benefit physicians in providing accurate diagnoses and in developing appropriate therapeutic strategies for abdominal diseases.


Subject(s)
Contrast Media , Image Processing, Computer-Assisted/methods , Movement , Perfusion Imaging , Respiration , Phantoms, Imaging , Statistics as Topic , Ultrasonography
10.
J Voice ; 32(1): 8-22, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28599995

ABSTRACT

According to Titze's 1988 derivations for phonation threshold pressure (PTP), there are a number of important variables that PTP depends upon. A primary one is the vertical glottal duct length T: PTP decreases if T is increased. Changing the length of T, however, may have a significant effect on other variables that PTP depends upon. This study examined the effects of lengthening the vertical uniform glottal duct on the transglottal and intraglottal pressures, and the derived transglottal pressure coefficients, for five glottal diameters (0.01, 0.02, 0.04, 0.08, and 0.16 cm) and three transglottal pressures (500, 1000, and 1500 Pa) for the uniform glottis by using the computational fluid dynamics code Fluent (for laminar, incompressible, two-dimensional flow). The results suggest the following: A longer vertical glottal duct length increases the intraglottal and transglottal pressures, and more so for smaller glottal diameters, and increases the transglottal pressure coefficient. In addition, unlike the transglottal pressure coefficient, the glottal entrance pressure coefficient is highly dependent on the vertical glottal duct length only for lower flows and Reynolds numbers, but is relatively independent of duct length, glottal diameter, and transglottal pressure above a flow value of approximately 50 cm3/s, suggesting that the entrance pressure coefficient is a relatively local phenomenon. These results suggest that the vertical glottal duct length and its effects need to be taken into consideration for vocal fold modeling, aeroacoustics purposes, and the estimation of PTP.


Subject(s)
Glottis/physiology , Models, Biological , Phonation , Glottis/anatomy & histology , Humans , Pressure
11.
J Acoust Soc Am ; 141(5): 3312, 2017 05.
Article in English | MEDLINE | ID: mdl-28599522

ABSTRACT

For the purpose of noninvasively visualizing the dynamics of the contact between vibrating vocal fold medial surfaces, an ultrasonic imaging method which is referred to as array-based transmission ultrasonic glottography is proposed. An array of ultrasound transducers is used to detect the ultrasound wave transmitted from one side of the vocal folds to the other side through the small-sized contact between the vocal folds. A passive acoustic mapping method is employed to visualize and locate the contact. The results of the investigation using tissue-mimicking phantoms indicate that it is feasible to use the proposed method to visualize and locate the contact between soft tissues. Furthermore, the proposed method was used for investigating the movement of the contact between the vibrating vocal folds of excised canine larynges. The results indicate that the vertical movement of the contact can be visualized as a vertical movement of a high-intensity stripe in a series of images obtained by using the proposed method. Moreover, a visualization and analysis method, which is referred to as array-based ultrasonic kymography, is presented. The velocity of the vertical movement of the contact, which is estimated from the array-based ultrasonic kymogram, could reach 0.8 m/s during the vocal fold vibration.

12.
Ultrasound Med Biol ; 43(2): 482-493, 2017 02.
Article in English | MEDLINE | ID: mdl-27894833

ABSTRACT

The feasibility of using ultrasonic Nakagami imaging to evaluate thermal lesions induced by microwave ablation (MWA) in ex vivo porcine liver was explored. Dynamic changes in echo amplitudes and Nakagami parameters in the region of the MWA-induced thermal lesion, as well as the contrast-to-noise ratio (CNR) between the MWA-induced thermal lesion and the surrounding normal tissue, were calculated simultaneously during the MWA procedure. After MWA exposure, a bright hyper-echoic region appeared in ultrasonic B-mode and Nakagami parameter images as an indicator of the thermal lesion. Mean values of the Nakagami parameter in the thermal lesion region increased to 0.58, 0.71 and 0.91 after 1, 3 and 5 min of MVA. There were no significant differences in envelope amplitudes in the thermal lesion region among ultrasonic B-mode images obtained after different durations of MWA. Unlike ultrasonic B-mode images, Nakagami images were less affected by the shadow effect in monitoring of MWA exposure, and a fairly complete hyper-echoic region was observed in the Nakagami image. The mean value of the Nakagami parameter increased from approximately 0.47 to 0.82 during MWA exposure. At the end of the postablation stage, the mean value of the Nakagami parameter decreased to 0.55 and was higher than that before MWA exposure. CNR values calculated for Nakagami parameter images increased from 0.13 to approximately 0.61 during MWA and then decreased to 0.26 at the end of the post-ablation stage. The corresponding CNR values calculated for ultrasonic B-mode images were 0.24, 0.42 and 0.17. This preliminary study on ex vivo porcine liver suggested that Nakagami imaging have potential use in evaluating the formation of MWA-induced thermal lesions. Further in vivo studies are needed to evaluate the potential application.


Subject(s)
Ablation Techniques/methods , Liver/diagnostic imaging , Liver/surgery , Ultrasonography/methods , Animals , Feasibility Studies , Microwaves , Models, Animal , Swine
13.
Ultrason Sonochem ; 34: 400-409, 2017 01.
Article in English | MEDLINE | ID: mdl-27773262

ABSTRACT

This paper compared the effects of flowing phase-shift nanodroplets (NDs) and lipid-shelled microbubbles (MBs) on subsequent cavitation during focused ultrasound (FUS) exposures. The cavitation activity was monitored using a passive cavitation detection method as solutions of either phase-shift NDs or lipid-shelled MBs flowed at varying velocities through a 5-mm diameter wall-less vessel in a transparent tissue-mimicking phantom when exposed to FUS. The intensity of cavitation for the phase-shift NDs showed an upward trend with time and cavitation for the lipid-shelled MBs grew to a maximum at the outset of the FUS exposure followed by a trend of decreases when they were static in the vessel. Meanwhile, the increase of cavitation for the phase-shift NDs and decrease of cavitation for the lipid-shelled MBs had slowed down when they flowed through the vessel. During two discrete identical FUS exposures, while the normalized inertial cavitation dose (ICD) value for the lipid-shelled MB solution was higher than that for the saline in the first exposure (p-value <0.05), it decreased to almost the same level in the second exposure. For the phase-shift NDs, the normalized ICD was 0.71 in the first exposure and increased to 0.97 in the second exposure. At a low acoustic power, the normalized ICD values for the lipid-shelled MBs tended to increase with increasing velocities from 5 to 30cm/s (r>0.95). Meanwhile, the normalized ICD value for the phase-shift NDs was 0.182 at a flow velocity of 5cm/s and increased to 0.188 at a flow velocity of 15cm/s. As the flow velocity increased to 20cm/s, the normalized ICD was 0.185 and decreased to 0.178 at a flow velocity of 30cm/s. At high acoustic power, the normalized ICD values for both the lipid-shelled MBs and the phase-shift NDs increased with increasing flow velocities from 5 to 30cm/s (r>0.95). The effects of the flowing phase-shift NDs vaporized into gas bubbles as cavitation nuclei on the subsequent cavitation were inverse to those of the flowing lipid-shelled MBs destroyed after focused ultrasound exposures.


Subject(s)
Microbubbles , Ultrasonic Waves , Phantoms, Imaging
14.
J Acoust Soc Am ; 140(2): 798, 2016 08.
Article in English | MEDLINE | ID: mdl-27586712

ABSTRACT

Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies.

15.
Ultrasound Med Biol ; 42(12): 2812-2825, 2016 12.
Article in English | MEDLINE | ID: mdl-27633284

ABSTRACT

Ultrafast plane wave ultrasonography is employed in this study to visualize the vibration of the larynx and quantify the vibration phase as well as the vibration amplitude of the laryngeal tissue. Ultrasonic images were obtained at 5000 to 10,000 frames/s in the coronal plane at the level of the glottis. Although the image quality degraded when the imaging mode was switched from conventional ultrasonography to ultrafast plane wave ultrasonography, certain anatomic structures such as the vocal folds, as well as the sub- and supraglottic structures, including the false vocal folds, can be identified in the ultrafast plane wave ultrasonic image. The periodic vibration of the vocal fold edge could be visualized in the recorded image sequence during phonation. Furthermore, a motion estimation method was used to quantify the displacement of laryngeal tissue from hundreds of frames of ultrasonic data acquired. Vibratory displacement waveforms of the sub- and supraglottic structures were successfully obtained at a high level of ultrasonic signal correlation. Moreover, statistically significant differences in vibration pattern between the sub- and supraglottic structures were found. Variation of vibration amplitude along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Phase delay of vibration along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface.


Subject(s)
Larynx/physiology , Phonation/physiology , Ultrasonography/methods , Adult , Female , Humans , Male , Middle Aged , Vibration , Young Adult
16.
Ultrasonics ; 69: 166-81, 2016 07.
Article in English | MEDLINE | ID: mdl-27111870

ABSTRACT

Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution, especially in a laboratory environment where more careful analysis may be required under controlled conditions.

17.
J Acoust Soc Am ; 137(6): 3099-106, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26093401

ABSTRACT

The quality of ultrafast active cavitation imaging (UACI) using plane wave transmission is hindered by low transmission pressure, which is necessary to prevent bubble destruction. In this study, a UACI method that combined wavelet transform with pulse inversion (PI) was proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The main challenge in using wavelet transform is the selection of the optimum mother wavelet. A mother wavelet named "cavitation bubble wavelet" and constructed according to Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model was expected to obtain a high correlation between the bubbles and beamformed echoes. The method was validated by in vitro experiments. Results showed that the image quality was associated with the initial radius of bubble and the scale. The signal-to-noise ratio (SNR) of the best optimum cavitation bubble wavelet transform (CBWT) mode image was improved by 3.2 dB compared with that of the B-mode image in free-field experiments. The cavitation-to-tissue ratio of the best optimum PI-based CBWT mode image was improved by 2.3 dB compared with that of the PI-based B-mode image in tissue experiments. Furthermore, the SNR versus initial radius curve had the potential to estimate the size distribution of cavitation bubbles.

18.
J Acoust Soc Am ; 137(5): 2563-72, 2015 May.
Article in English | MEDLINE | ID: mdl-25994689

ABSTRACT

Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 µs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Sound , Ultrasonics/methods , Algorithms , Equipment Design , Gases , High-Intensity Focused Ultrasound Ablation/instrumentation , Models, Theoretical , Motion , Pressure , Signal Processing, Computer-Assisted , Surface Properties , Time Factors , Transducers, Pressure , Ultrasonics/instrumentation
19.
J Voice ; 29(1): 129.e19-27, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25444155

ABSTRACT

OBJECTIVE: Slantwise-placed electroglottography (EGG) was proposed for synchronous use with an ultrasound machine in a previous work. The objective was to confirm the feasibility of this slant EGG, differentiate it from conventional EGG, and give suggestions for its applications. STUDY DESIGN AND METHODS: A synchronized system composed of an EGG device, a high-speed video, a sound level meter, and a headset was established. The same phonation conditions were acquired by training subjects to reach the target phonation frequency and intensity. Electrode position was designed, and vocal fold vibration parameters were measured from EGG waveforms recorded in each electrode position. RESULTS: Comparison showed that the characteristic points identified in slant EGG waveforms were consistent with the vibration phase shown by high-speed video images. Phonation frequency measured from slant EGG was highly accurate. EGG amplitude nonlinearly decreased with the increase of electrode distance. Compared with conventional EGG parameters, velocity ratio and glottal closed quotient measured from slant EGG were accurate when electrodes were placed symmetrically and the electrode distance was within a proper length. CONCLUSIONS: Slant EGG was proved feasible and can be considered as a useful tool to obtain comprehensive information in investigating the in vivo vocal fold dynamics when synchronized with other detecting equipment.


Subject(s)
Electrodiagnosis/methods , Phonation , Vocal Cords/diagnostic imaging , Electrodiagnosis/instrumentation , Humans , Ultrasonography , Vocal Cords/physiology
20.
J Acoust Soc Am ; 136(1): 350-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24993219

ABSTRACT

Understanding the sound transmission of the neck tissue is necessary and important in areas such as vocal function evaluation and electrolarynx improvement. In this paper, a simple method using a reflectionless tube was proposed to measure the neck frequency response function (NFRF) of ten normal subjects (five males and five females) during Mandarin vowel production. The NFRFs across different subjects producing different vowels were measured at different neck positions and compared to confirm the effectiveness of the method, and determine the NFRF variations in normal subjects. The results showed that the proposed method offered an easy and effective way to obtain an accurate NFRF. For normal subjects, the neck tissue can be treated as a low-pass filter, with a maximum gain at 310 Hz and a roll-off at a slope of -8.4 dB/octave, flattening out above 2000 Hz. The measurement position on the neck did not influence the shape of the NFRF, but did change the overall gains of the NFRF. In addition, there was a significant gender difference in NFRFs at the low frequencies. Finally, some potential applications of this method and the results are suggested.


Subject(s)
Neck/physiology , Phonation , Phonetics , Sound , Speech Acoustics , Voice Quality , Acoustics , Adult , Female , Fourier Analysis , Humans , Linear Models , Male , Motion , Neck/anatomy & histology , Sound Spectrography , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...