Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Blood ; 130(1): 48-58, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28490572

ABSTRACT

Genomic studies have revealed significant branching heterogeneity in cancer. Studies of resistance to tyrosine kinase inhibitor therapy have not fully reflected this heterogeneity because resistance in individual patients has been ascribed to largely mutually exclusive on-target or off-target mechanisms in which tumors either retain dependency on the target oncogene or subvert it through a parallel pathway. Using targeted sequencing from single cells and colonies from patient samples, we demonstrate tremendous clonal diversity in the majority of acute myeloid leukemia (AML) patients with activating FLT3 internal tandem duplication mutations at the time of acquired resistance to the FLT3 inhibitor quizartinib. These findings establish that clinical resistance to quizartinib is highly complex and reflects the underlying clonal heterogeneity of AML.


Subject(s)
Benzothiazoles/administration & dosage , Drug Resistance, Neoplasm , High-Throughput Nucleotide Sequencing , INDEL Mutation , Leukemia, Myeloid, Acute , Phenylurea Compounds/administration & dosage , fms-Like Tyrosine Kinase 3/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Male
2.
BMC Genomics ; 16: 424, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-26031894

ABSTRACT

BACKGROUND: The genome of the human gastric pathogen Helicobacter pylori encodes a large number of DNA methyltransferases (MTases), some of which are shared among many strains, and others of which are unique to a given strain. The MTases have potential roles in the survival of the bacterium. In this study, we sequenced a Malaysian H. pylori clinical strain, designated UM032, by using a combination of PacBio Single Molecule, Real-Time (SMRT) and Illumina MiSeq next generation sequencing platforms, and used the SMRT data to characterize the set of methylated bases (the methylome). RESULTS: The N4-methylcytosine and N6-methyladenine modifications detected at single-base resolution using SMRT technology revealed 17 methylated sequence motifs corresponding to one Type I and 16 Type II restriction-modification (R-M) systems. Previously unassigned methylation motifs were now assigned to their respective MTases-coding genes. Furthermore, one gene that appears to be inactive in the H. pylori UM032 genome during normal growth was characterized by cloning. CONCLUSION: Consistent with previously-studied H. pylori strains, we show that strain UM032 contains a relatively large number of R-M systems, including some MTase activities with novel specificities. Additional studies are underway to further elucidating the biological significance of the R-M systems in the physiology and pathogenesis of H. pylori.


Subject(s)
DNA Methylation , Genome, Bacterial , Helicobacter pylori/genetics , Bacterial Proteins/metabolism , Base Sequence , DNA Restriction Enzymes/metabolism , High-Throughput Nucleotide Sequencing , Internet , Methyltransferases/metabolism , Sequence Analysis, DNA , User-Computer Interface
4.
Genome Res ; 25(1): 129-41, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25236617

ABSTRACT

Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.


Subject(s)
Burkholderia pseudomallei/genetics , Epigenesis, Genetic , Genome, Bacterial , Recombination, Genetic , Transcriptome , Animals , DNA Primers , DNA, Bacterial/genetics , Escherichia coli/genetics , Female , Gene Deletion , Genetic Association Studies , Genomics , Haplotypes , Humans , Melioidosis/microbiology , Mice , Mice, Inbred BALB C , Multilocus Sequence Typing , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
5.
Proc Natl Acad Sci U S A ; 110(48): E4658-67, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24218615

ABSTRACT

The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs.


Subject(s)
Caulobacter/genetics , Cell Cycle/genetics , DNA Methylation/genetics , Gene Expression Regulation, Bacterial/genetics , Genome, Bacterial/genetics , Adenine/metabolism , Base Sequence , Caulobacter/metabolism , Cloning, Molecular , Computational Biology , Cytosine/metabolism , Kinetics , Molecular Sequence Data , Sequence Analysis, DNA
6.
Genome Announc ; 1(5)2013 Sep 19.
Article in English | MEDLINE | ID: mdl-24051312

ABSTRACT

Helicobacter pylori causes human gastroduodenal diseases, including chronic gastritis and peptic ulcer disease. It is also a major microbial risk factor for the development of gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Twenty-one strains with different ethnicity, disease, and antimicrobial susceptibility backgrounds were sequenced by use of Illumina HiSeq and PacBio RS platforms.

7.
Gut Pathog ; 5: 25, 2013.
Article in English | MEDLINE | ID: mdl-23957912

ABSTRACT

BACKGROUND: Helicobacter pylori is a Gram-negative bacterium that persistently infects the human stomach inducing chronic inflammation. The exact mechanisms of pathogenesis are still not completely understood. Although not a natural host for H. pylori, mouse infection models play an important role in establishing the immunology and pathogenicity of H. pylori. In this study, for the first time, the genome sequences of clinical H. pylori strain UM032 and mice-adapted derivatives, 298 and 299, were sequenced using the PacBio Single Molecule, Real-Time (SMRT) technology. RESULT: Here, we described the single contig which was achieved for UM032 (1,599,441 bp), 298 (1,604,216 bp) and 299 (1,601,149 bp). Preliminary analysis suggested that methylation of H. pylori genome through its restriction modification system may be determinative of its host specificity and adaptation. CONCLUSION: Availability of these genomic sequences will aid in enhancing our current level of understanding the host specificity of H. pylori.

8.
mBio ; 4(4)2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23820394

ABSTRACT

UNLABELLED: Prior to the epidemic that emerged in Haiti in October of 2010, cholera had not been documented in this country. After its introduction, a strain of Vibrio cholerae O1 spread rapidly throughout Haiti, where it caused over 600,000 cases of disease and >7,500 deaths in the first two years of the epidemic. We applied whole-genome sequencing to a temporal series of V. cholerae isolates from Haiti to gain insight into the mode and tempo of evolution in this isolated population of V. cholerae O1. Phylogenetic and Bayesian analyses supported the hypothesis that all isolates in the sample set diverged from a common ancestor within a time frame that is consistent with epidemiological observations. A pangenome analysis showed nearly homogeneous genomic content, with no evidence of gene acquisition among Haiti isolates. Nine nearly closed genomes assembled from continuous-long-read data showed evidence of genome rearrangements and supported the observation of no gene acquisition among isolates. Thus, intrinsic mutational processes can account for virtually all of the observed genetic polymorphism, with no demonstrable contribution from horizontal gene transfer (HGT). Consistent with this, the 12 Haiti isolates tested by laboratory HGT assays were severely impaired for transformation, although unlike previously characterized noncompetent V. cholerae isolates, each expressed hapR and possessed a functional quorum-sensing system. Continued monitoring of V. cholerae in Haiti will illuminate the processes influencing the origin and fate of genome variants, which will facilitate interpretation of genetic variation in future epidemics. IMPORTANCE: Vibrio cholerae is the cause of substantial morbidity and mortality worldwide, with over three million cases of disease each year. An understanding of the mode and rate of evolutionary change is critical for proper interpretation of genome sequence data and attribution of outbreak sources. The Haiti epidemic provides an unprecedented opportunity to study an isolated, single-source outbreak of Vibrio cholerae O1 over an established time frame. By using multiple approaches to assay genetic variation, we found no evidence that the Haiti strain has acquired any genes by horizontal gene transfer, an observation that led us to discover that it is also poorly transformable. We have found no evidence that environmental strains have played a role in the evolution of the outbreak strain.


Subject(s)
Cholera/epidemiology , Cholera/microbiology , Epidemics , Evolution, Molecular , Genome, Bacterial , Vibrio cholerae O1/genetics , Vibrio cholerae O1/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Order , Haiti/epidemiology , Humans , Mutation , Sequence Analysis, DNA , Vibrio cholerae O1/classification
9.
Nucleic Acids Res ; 40(20): 10345-55, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22923523

ABSTRACT

Alternative RNA splicing greatly expands the repertoire of proteins encoded by genomes. Next-generation sequencing (NGS) is attractive for studying alternative splicing because of the efficiency and low cost per base, but short reads typical of NGS only report mRNA fragments containing one or few splice junctions. Here, we used single-molecule amplification and long-read sequencing to study the HIV-1 provirus, which is only 9700 bp in length, but encodes nine major proteins via alternative splicing. Our data showed that the clinical isolate HIV-1(89.6) produces at least 109 different spliced RNAs, including a previously unappreciated ∼1 kb class of messages, two of which encode new proteins. HIV-1 message populations differed between cell types, longitudinally during infection, and among T cells from different human donors. These findings open a new window on a little studied aspect of HIV-1 replication, suggest therapeutic opportunities and provide advanced tools for the study of alternative splicing.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Viral , HIV-1/genetics , RNA, Messenger/metabolism , RNA, Viral/metabolism , Cell Line , Cells, Cultured , Humans , Polymerase Chain Reaction , RNA Splice Sites , RNA, Messenger/chemistry , RNA, Viral/chemistry , Sequence Analysis, RNA , T-Lymphocytes/virology
10.
Nat Biotechnol ; 30(7): 701-707, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22750883

ABSTRACT

Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.


Subject(s)
Cholera/genetics , Genome, Bacterial , Sequence Analysis, DNA/methods , Algorithms , Base Sequence , Computational Biology , Contig Mapping , Genes, rRNA/genetics , Molecular Sequence Data
11.
Nature ; 485(7397): 260-3, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22504184

ABSTRACT

Effective targeted cancer therapeutic development depends upon distinguishing disease-associated 'driver' mutations, which have causative roles in malignancy pathogenesis, from 'passenger' mutations, which are dispensable for cancer initiation and maintenance. Translational studies of clinically active targeted therapeutics can definitively discriminate driver from passenger lesions and provide valuable insights into human cancer biology. Activating internal tandem duplication (ITD) mutations in FLT3 (FLT3-ITD) are detected in approximately 20% of acute myeloid leukaemia (AML) patients and are associated with a poor prognosis. Abundant scientific and clinical evidence, including the lack of convincing clinical activity of early FLT3 inhibitors, suggests that FLT3-ITD probably represents a passenger lesion. Here we report point mutations at three residues within the kinase domain of FLT3-ITD that confer substantial in vitro resistance to AC220 (quizartinib), an active investigational inhibitor of FLT3, KIT, PDGFRA, PDGFRB and RET; evolution of AC220-resistant substitutions at two of these amino acid positions was observed in eight of eight FLT3-ITD-positive AML patients with acquired resistance to AC220. Our findings demonstrate that FLT3-ITD can represent a driver lesion and valid therapeutic target in human AML. AC220-resistant FLT3 kinase domain mutants represent high-value targets for future FLT3 inhibitor development efforts.


Subject(s)
Benzothiazoles/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Molecular Targeted Therapy , Mutation/genetics , Phenylurea Compounds/therapeutic use , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , Benzothiazoles/pharmacology , Cell Line, Tumor , DNA Mutational Analysis , Drug Resistance, Neoplasm/genetics , Humans , Leukemia, Myeloid, Acute/metabolism , Models, Molecular , Molecular Structure , Phenylurea Compounds/pharmacology , Protein Binding , Protein Structure, Tertiary/genetics , Recurrence , Reproducibility of Results , fms-Like Tyrosine Kinase 3/metabolism
12.
Genomics ; 85(1): 60-70, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15607422

ABSTRACT

Tgfbm1 (chromosome 5, P = 8 x 10(-5)) and Tgfbm3 (chromosome 12, P = 6 x 10(-11)) were identified as loci that modify developmental angiogenesis of Tgfb1 -/- mice. Congenic mice validated these loci and demonstrated epistatic interaction between them. The novel locus, Tgfbm3, encompasses approximately 22 genes, colocalizes with both tumor susceptibility and atherosclerosis susceptibility loci, and is enriched in genes regulating cell growth and morphogenesis. The use of gene knockout and/or transgenic mice that predispose to a complex trait, such as vascular development/angiogenesis, facilitates the identification of modifiers by simplifying genetic analysis. Identification of genes that modify response to lack of transforming growth factor beta1 (TGFbeta1) will enhance the understanding of TGFbeta1 action in vivo and may help predict which patients would respond well to anti-TGFbeta therapy. Identification of angiogenesis-modifying genes may provide new targets for angiogenesis therapies and analysis of polymorphisms therein may contribute to assessment of risk for diseases involving angiogenesis.


Subject(s)
Epistasis, Genetic , Gene Expression Regulation, Developmental , Neovascularization, Physiologic/genetics , Quantitative Trait Loci/genetics , Transforming Growth Factor beta/genetics , Animals , Arteriosclerosis/genetics , Chromosomes/genetics , Genetic Predisposition to Disease/genetics , Lod Score , Mice , Mice, Knockout , Neoplasms/genetics , Species Specificity , Transforming Growth Factor beta1 , Transforming Growth Factor beta3
13.
Hum Mol Genet ; 12(13): 1579-89, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-12812985

ABSTRACT

The transforming growth factor beta signaling family is a key player in genetic and multifactorial diseases, including hereditary hemorrhagic telangiectasia (HHT), cancer, atherosclerosis and immunomodulation. HHT types 1 and 2 are caused by loss of function mutations in ENG and ACVRL1; polymorphisms in TBRI and TGFB1 are also associated with altered risks for cancer and cardiovascular diseases. There is therefore much interest in identifying factors that influence transforming growth factor beta1 (TGFbeta1) action in vivo. Here we identify a potent modifier locus, Tgfbkm2(129) (LOD=10.5, chromosome 1), that contributes over 90% of the genetic component determining survival to birth of Tgfb1(-/-) embryos in crosses between C57 and 129 mice, plus a suggestive modifier locus on chromosome 17 (LOD=3.7). Tgfb1(-/-) survival to birth (STB), in addition to dependence on embryonic Tgfbkm2 genotype, also depends on maternal effects. Fetal genotype and maternal factors interact to prevent Tgfb1(-/-) embryonic death due to defective yolk sac angiogenesis. C57 or C57/129.F1 mothers support high Tgfb1(-/-) STB rates, whereas 129 mothers do not. Strain differences in circulating maternal TGFbeta1 levels were excluded as the cause of this directional complementation. However, strong genetic support is provided for the involvement of maternal STB alleles of mitochondrial or imprinted genes that are only expressed when passed through the female lineage. Molecular identification of the functional gene(s) encoding Tgfbkm2 and its interacting maternal factors will be central to an understanding of the mode of action of TGFbeta1 in cardiovascular development.


Subject(s)
Transforming Growth Factor beta/genetics , Alleles , Animals , Blood Platelets/metabolism , Cell Survival , Crosses, Genetic , Female , Genetic Markers , Humans , Lod Score , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Mothers , Polymorphism, Genetic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...