Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Water Res ; 257: 121712, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728776

ABSTRACT

In this study, a conjunctive water management model based on interval stochastic bi-level programming method (CM-ISBP) is proposed for planning water trading program as well as quantifying mutual effects of water trading and systematic water saving. CM-ISBP incorporates water resources assessment with soil and water assessment tool (SWAT), systematic water-saving simulation combined with water trading, and interval stochastic bi-level programming (ISBP) within a general framework. Systematic water saving involves irrigation water-saving technologies (sprinkler irrigation, micro-irrigation, low-pressure pipe irrigation), enterprise water-saving potential and water-saving subsidy. The CM-ISBP is applied to a real case of a water-scarce watershed (i.e. Dagu River watershed, China). Mutual effects of water trading and water-saving activities are simulated with model establishment and quantified through mechanism analysis. The fate of saved water under the systematic water saving is also revealed. The coexistence of the two systems would increase system benefits by [11.89, 12.19]%, and increase the water use efficiency by [40.04, 40.46]%. Thus mechanism that couples water trading and water saving is optimal and recommended according to system performance.


Subject(s)
Conservation of Water Resources , Water Supply , China , Conservation of Water Resources/methods , Models, Theoretical , Rivers , Agricultural Irrigation , Water Resources , Conservation of Natural Resources
2.
Animals (Basel) ; 14(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612285

ABSTRACT

Pig farming is a crucial sector in global animal husbandry. The weight and body dimension data of pigs reflect their growth and development status, serving as vital metrics for assessing their progress. Presently, pig weight and body dimensions are predominantly measured manually, which poses challenges such as difficulties in herding, stress responses in pigs, and the control of zoonotic diseases. To address these issues, this study proposes a non-contact weight estimation and body measurement model based on point cloud data from pig backs. A depth camera was installed above a weighbridge to acquire 3D point cloud data from 258 Yorkshire-Landrace crossbred sows. We selected 200 Yorkshire-Landrace sows as the research subjects and applied point cloud filtering and denoising techniques to their three-dimensional point cloud data. Subsequently, a K-means clustering segmentation algorithm was employed to extract the point cloud corresponding to the pigs' backs. A convolutional neural network with a multi-head attention was established for pig weight prediction and added RGB information as an additional feature. During the data processing process, we also measured the back body size information of the pigs. During the model evaluation, 58 Yorkshire-Landrace sows were specifically selected for experimental assessment. Compared to manual measurements, the weight estimation exhibited an average absolute error of 11.552 kg, average relative error of 4.812%, and root mean square error of 11.181 kg. Specifically, for the MACNN, incorporating RGB information as an additional feature resulted in a decrease of 2.469 kg in the RMSE, a decrease of 0.8% in the MAPE, and a decrease of 1.032 kg in the MAE. Measurements of shoulder width, abdominal width, and hip width yielded corresponding average relative errors of 3.144%, 3.798%, and 3.820%. In conclusion, a convolutional neural network with a multi-head attention was established for pig weight prediction, and incorporating RGB information as an additional feature method demonstrated accuracy and reliability for weight estimation and body dimension measurement.

3.
Environ Res ; 249: 118377, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38331150

ABSTRACT

Nexus approach provides an effective perspective for implementing synergetic management of water resources. In this study, an interval two-stage chance-constrained water rights trading planning model under water-ecology-food nexus perspective (ITCWR-WEF) is proposed to analyze the interaction between water trading and water-ecology-food (WEF) nexus, which fills in the water resources management gaps from a novel nexus perspective. ITCWR-WEF incorporates hydrological simulation with soil and water assessment tool (SWAT), water rights configuration with interval two-stage chance-constrained programming (ITCP), and multi-criterion analysis with Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). The developed ITCWR-WEF is applied to a real case of Daguhe watershed, which has characteristics of water scarcity, food producing areas and fragile ecosystem. Initial water rights allocation is addressed before the trading. Mechanisms analysis is designed to reveal mutual effect of water rights trading and WEF nexus. Optimal water management scenario is identified through multi-criterion analysis. Results reveal that the mechanism of water rights trading with WEF nexus under low constraint-violation risk level of water availability and environment capacity is recommended to promote the rational water resources allocation to balance the economic goals, water environment and water supply security, as well as ecological and food water demand guarantees.


Subject(s)
Conservation of Water Resources , Water Resources , Water Supply , Water Resources/supply & distribution , Water Supply/statistics & numerical data , Conservation of Water Resources/methods , Conservation of Water Resources/statistics & numerical data , Agriculture/methods , Agriculture/statistics & numerical data
5.
Nanoscale ; 15(33): 13645-13652, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37551614

ABSTRACT

Endohedral metallofullerenes are capable of holding peculiar metal clusters inside the carbon cage. Additionally, these display many chemical and physical properties originating from the complexation between the metal clusters and carbon cages, which could be acquired for wide applications. In this study, two metallofullerenes (Ce2O@C88 and Ce3N@C88) with an identical large C88-D2(35) cage, and their molecular structures and single-molecule conductance properties were investigated comparatively. Characterizations of UV-vis-NIR absorption spectroscopy, Raman spectroscopy, and DFT calculations were employed to determine the geometries and electronic structures of Ce2O@C88 and Ce3N@C88. These molecules revealed varied energy gaps, structural parameters, vibrational modes, and molecular frontier orbitals. Although the two metallofullerenes have an identical cage isomer of C88-D2(35), their different endohedral clusters can influence their structures and physicochemical properties. Furthermore, the single-molecule conductance properties were measured using the scanning tunneling microscopy break junction technique (STM-BJ). The experimental results revealed that Ce2O@C88 has a higher conductance than Ce3N@C88 and C60. This revealed the cluster-dependent electron transportation as well as the significant research value of metallofullerenes with large carbon cages. These results provide guidance for fabricating single-molecule electronic devices.

6.
Nat Commun ; 14(1): 4922, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582960

ABSTRACT

Spin-based sensors have attracted considerable attention owing to their high sensitivities. Herein, we developed a metallofullerene-based nano spin sensor to probe gas adsorption within porous organic frameworks. For this, spin-active metallofullerene, Sc3C2@C80, was selected and embedded into a nanopore of a pyrene-based covalent organic framework (Py-COF). Electron paramagnetic resonance (EPR) spectroscopy recorded the EPR signals of Sc3C2@C80 within Py-COF after adsorbing N2, CO, CH4, CO2, C3H6, and C3H8. Results indicated that the regularly changing EPR signals of embedded Sc3C2@C80 were associated with the gas adsorption performance of Py-COF. In contrast to traditional adsorption isotherm measurements, this implantable nano spin sensor could probe gas adsorption and desorption with in situ, real-time monitoring. The proposed nano spin sensor was also employed to probe the gas adsorption performance of a metal-organic framework (MOF-177), demonstrating its versatility. The nano spin sensor is thus applicable for quantum sensing and precision measurements.

7.
ACS Omega ; 8(26): 23754-23762, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426245

ABSTRACT

A new supramolecular complex with a dimeric structure (2Y3N@C80⊂OPP) constructed by metallofullerene Y3N@Ih-C80 and figure-of-eight molecular nanoring of oligoparaphenylene (OPP) was investigated using dispersion-corrected density functional theory (DFT-D3). The interactions between the Y3N@Ih-C80 guest and the OPP host were studied theoretically at the B3LYP-D3/6-31G(d)∼SDD level. By analyzing geometric characteristics and host-guest binding energies, it is revealed that the OPP is an ideal host molecule for the Y3N@Ih-C80 guest. Typically, the OPP can well induce the orientation of the endohedral Y3N cluster on the plane of nanoring. Meanwhile, the configuration of the dimeric structure demonstrates that OPP presents excellent elastic adaptability and shape flexibility during the encapsulation of Y3N@Ih-C80. Highly accurate binding energy suggests that 2Y3N@C80⊂OPP (∼-443.82 kJ mol-1 at the ωB97M-V/def2-QZVPP level of theory) is an extremely stable host-guest complex. Thermodynamic information indicates that the formation of the 2Y3N@C80⊂OPP dimer is thermodynamically spontaneous. Furthermore, electronic property analysis reveals that this dimeric structure has a strong electron-attracting ability. Energy decomposition and real-space function analyses of host-guest interactions reveal the characteristics and nature of the noncovalent interactions in the supramolecules. These results provide theoretical support for the design of new host-guest systems based on metallofullerene and nanoring.

8.
Chemphyschem ; 23(24): e202200507, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36018612

ABSTRACT

Metallofullertubes are endohedral metallofullerenes with tubular fullerene cage possessing the segment of carbon nanotubes. Metallofullertubes have endohedral metal atom, fullerene cap and nanotube segment. Therefore, it is conceivable that this new kind of molecular materials would bring on many unexpected properties. In recent years, several pioneer metallofullertubes have been successfully reported, such as La2 @D5 (450)-C100 , Ce2 @D5 (450)-C100 , Sm2 @D3d (822)-C104 . Apart from the great effort to synthesize molecules and determine their structures, the physical and chemical properties of metallofullertubes are still waiting to be explored. In this minireview, we revisit the structures of reported metallofullertubes, and then we highlight their electronic and supramolecular properties. Finally, some perspectives for the development of metallofullertubes are also discussed.


Subject(s)
Fullerenes , Nanotubes, Carbon , Fullerenes/chemistry , Nanotubes, Carbon/chemistry , Metals/chemistry , Electronics
9.
Dalton Trans ; 51(26): 10227-10233, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35748358

ABSTRACT

Erbium metallofullerenes exhibit near-infrared photoluminescence from the Er3+ ions, which has potential applications in telecommunications, optical devices and bioscience. In this manuscript, we report the construction of a supramolecular complex of metallofullerene Er3N@C80 and cycloparaphenylene [12]CPP to adjust the near-infrared photoluminescence of Er3N@C80 through host-guest interactions. Moreover, this supramolecular complex shows a multiwavelength luminescence property. Mass spectrometry, electrochemical measurements and proton NMR spectroscopy were used to characterize the structure of Er3N@C80⊂[12]CPP. The electrochemical results of Er3N@C80⊂[12]CPP show the negatively shifted redox potentials compared to pristine Er3N@C80 and the 1H NMR signals of Er3N@C80⊂[12]CPP shift upfield compared to pristine [12]CPP. More importantly, the photoluminescence spectra show that the [12]CPP nanoring can affect the near-infrared emission of encapsulated Er3+ ions in Er3N@C80, with the characteristic emission peak of Er3+ at 1.5 µm being broadened and enhanced in the Er3N@C80⊂[12]CPP complex, while the fluorescence lifetime of Er3+ also becomes longer after assembly formation. Furthermore, the Er3N@C80 guest also can influence the photoluminescence property of [12]CPP, whose emission peaks exhibit a slight blue-shift in the Er3N@C80⊂[12]CPP complex. This study illustrates that the outer nanoring can be employed to adjust the photoluminescence of the encapsulated Er3+ ion in Er3N@C80.

10.
J Environ Manage ; 309: 114679, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35176569

ABSTRACT

Water related problems, including water scarcity and pollution, have become increasingly urgent challenges especially in arid and semiarid regions. Two-dimensional water trading (2DWT) mechanism has been designed to unify the quantity and quality of water for relieving the water crisis. This study aims to develop a risk aversion optimization-two dimensional water trading model (RAO-2DWTM) for planning the regional-scale water resources management system (RWMS). This is the first attempt on planning RWMS through risk aversion optimization within the two-dimensional water trading framework. RAO-2DWTM cannot only support in-depth analysis regarding the effect of decision maker's preferences on system risk in different trading scenarios, but also reflect the interaction between water right trading and effluent trading, as well as disclose the optimal scheme of water resource management under uncertainties. Twenty four scenarios associated with different trading scenarios and robust levels are analyzed. The optimization scheme under the optimal risk control level is determined based on TOPSIS. Results revealed that 2DWT would bring high benefit with reduced risk cost, water deficit and emissions, implying the effectiveness of 2DWT mechanism. The results also disclosed that risk aversion behavior can mitigate water scarcity and pollution, as well as reduce risk cost, but may lead to some losses of system benefit. Consequently, decision makers should make trade-offs between system benefit and risk in identifying desired trading schemes.


Subject(s)
Sustainable Development , Water , China , Uncertainty , Water Pollution/prevention & control , Water Resources
11.
Angew Chem Int Ed Engl ; 61(15): e202116854, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35044049

ABSTRACT

Tubular fullerenes can be considered as end-capped carbon nanotubes with accurate structure, which are promising nanocarbon materials for advanced single-molecule electronic devices. Herein, we report the synthesis and characterization of a metallofullertube Ce2 @D5 (450)-C100 , which has a tubular C100 cage with a carbon nanotube segment and two fullerene end-caps. As there are structure correlations between tubular Ce2 @D5 (450)-C100 and spherical Ce2 @Ih -C80 , their structure-property relationship has been compared by means of experimental and theoretical methods. Notably, single-molecule conductance measurement determined that the conductivity of Ce2 @D5 (450)-C100 was up to eight times larger than that of Ce2 @Ih -C80 . Furthermore, supramolecular assembly of Ce2 @D5 (450)-C100 and a [12]CPP nanohoop was investigated, and theoretical calculations revealed that metallofullertube Ce2 @D5 (450)-C100 adopted a "standing" configuration in the cavity of [12]CPP. These results demonstrate the special nature of this kind of metallofullertube.

12.
ACS Nano ; 15(12): 19080-19088, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34730326

ABSTRACT

It is vital to construct luminescent single-molecule magnets (SMMs) and explore their applications in quantum computing technique and magneto-luminescence devices. In this work, we report a luminescent single-molecule magnet with thermally activated delayed fluorescence (TADF) based on metallofullerene DyY2N@C80. DyY2N@C80 was constructed by integrating dysprosium and yttrium ions into a fullerene cage. Magnetic results suggest that DyY2N@C80 exhibits magnetic hysteresis loops below 8 K originating from the Dy3+ ion. Moreover, DyY2N@C80 exhibits TADF originating from the Y3+-coordinated carbon cage, whose luminescence peak positions and peak intensities can be obviously influenced by Dy3+. Furthermore, a supramolecular complex of DyY2N@C80 and [12]Cycloparaphenylene ([12]CPP) was then prepared to construct a single-molecule magnet with multiwavelength luminescence. The effects of host-guest interaction on photoluminescence properties of DyY2N@C80 were disclosed. Theoretical calculations were also employed to illustrate the structures of DyY2N@C80 and DyY2N@C80⊂[12]CPP.

13.
Chem Commun (Camb) ; 57(80): 10317-10326, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34542549

ABSTRACT

Endohedral metallofullerenes have fascinating core-shell structures, with metal atoms or metal clusters encaged in fullerene cages, and they display various chemical, optical and magnetic properties derived from different types of fullerene cages and metal moieties. Fullerene cages can act as carriers to stabilize unusual cluster moieties. Many bizarre species that are hard to produce via synthetic methods survive well under the protection of a fullerene cage, making metallofullerenes ideal platforms for generating new clusters and bonds. Fullerene cages can also be carriers to hold active unpaired electrons. Some metallofullerenes possess electron spin and show intriguing magnetic properties, making them applicable for use in quantum computing, high density information storage and magnetoreception systems. The exploration of new metallofullerenes is still ongoing, while function-oriented studies are also promoted for the future application of metallofullerenes. Herein, we highlight the recent progress in the synthesis, electron spin characteristics and magnetic properties of metallofullerenes. Discussions and an outlook on the future development of metallofullerenes are also stated.

14.
Nanoscale ; 13(9): 4880-4886, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33625431

ABSTRACT

The nanoring structure of cycloparaphenylenes (CPPs) can be considered as the shortest fragment of a carbon nanotube. Herein, we successfully prepared a double-walled carbon nanoring of [6]CPP⊂[12]CPP, which can be regarded as the shortest double-walled carbon nanotube. [6]CPP⊂[12]CPP was constructed through the supramolecular assembly, and its crystallographic structure was unambiguously determined by single-crystal X-ray diffraction. The host-guest interaction and charge transfer in [6]CPP⊂[12]CPP were disclosed by UV-Vis absorption, fluorescence, and electrochemical studies. Electron paramagnetic resonance (EPR) spectroscopy disclosed the stability of the [6]CPP⊂[12]CPP cation radical, whose unpaired spin was fully delocalized on the inner [6]CPP and well protected by outer [12]CPP. Moreover, [6]CPP⊂[12]CPP shows highly enhanced photoconductivity and photocurrent under light irradiation compared to those of pristine monomers. The self-assembly behavior of [6]CPP⊂[12]CPP was also studied, and it was found that [6]CPP⊂[12]CPP molecules tend to form a square rod structure in the DMF solution. Thus, these results demonstrate that this double-walled carbon nanoring material has a great potential application in photoelectronic devices and organic semiconductors.

15.
Chem Commun (Camb) ; 56(74): 10879-10882, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32804991

ABSTRACT

We report unambiguous crystallographic evidence for the Russian-doll-type metallofullerene Sc4C2@Ih-C80. 45Sc NMR further demonstrates the tetrahedron arrangement of the Sc4C2 cluster. Moreover, the electrochemical test reveals the stable oxidation state of Sc4C2@C80. Hence, the Sc4C2@C80 cation radical was studied by electron spin resonance spectroscopy. These results provide better understanding for the previously less-explored Sc4C2@C80.

16.
Inorg Chem ; 59(12): 8284-8290, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32437143

ABSTRACT

Endohedral metallofullerenes have greatly expanded the range of the fullerene family due to their nesting structure and unusual encapsulated clusters protected by a fullerene cage. Herein, we report a metallofullerene Sc4CNH@Ih-C80, which has a scandium tetrahedron supported by H and CN anions inside fullerene C80. Sc4CNH@Ih-C80 has a rare multilayer nesting structure, and the internal Sc4CNH is the most complex endohedral cluster disclosed to date. Sc4CNH@Ih-C80 has so many bonding types (metal-carbide, metal-nitride, and metal-hydride), which weave a polyhedron of Sc4CNH clusters. This work shows that the endohedral metallofullerenes have the potential to build inorganic nesting polyhedra that have distinctive architectures and unique electronic properties. Sc4CNH@Ih-C80 was synthesized by means of the arc-discharge method using scandium and graphite under the mixed atmosphere of hydrogen, nitrogen, and helium. It is the first time to disclose an unprecedented metal-hydride bond in a fullerene cage. This result shows that the endohedral fullerenes bearing hydrogen species can be synthesized by the arc-discharge technique under an atmosphere of hydrogen. This work demonstrates that a fullerene cage can be an ample carrier to encapsulate unusual cluster moieties.

17.
Nanoscale ; 11(40): 18612-18618, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31580370

ABSTRACT

It is important to explore luminescent single-molecule magnets (SMMs) to promote their application in high-density data storage. Herein, we report two dimetallofullerenes of DyEr@C82 isomers, which exhibit cage-dependent single-molecule magnet behavior and photoluminescence properties. DyEr@C82 isomers were characterized with a Cs and C3v cage symmetry by UV-vis-NIR spectroscopy and single-crystal X-ray diffraction analysis. Magnetic results revealed that DyEr@C3v-C82 displays SMM behavior below 3 K, whereas DyEr@Cs-C82 is a paramagnet. In addition, photoluminescence (PL) was also observed for both of these two isomers, whose peak patterns are different. Theoretical calculations revealed the presence of a one-electron-two-center Dy-Er bond in these two isomers, and different electronic structures of DyEr@Cs-C82 and DyEr@C3v-C82, which agrees well with the experimental results. These results show that dimetallofullerenes are promising magneto-luminescent materials with varied properties.

18.
Chem Commun (Camb) ; 55(77): 11511-11514, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31490471

ABSTRACT

A short metallofullere-peapod of Y2@C79N⊂[4]CHBC was constructed. The strong confinement effect from the large π-extended [4]CHBC nanoring induces molecular orientation of the wrapped Y2@C79N, which can be sensed by a Y2@C79N spin probe. The low susceptibility of the spin phase memory time (Tm) for the Y2@C79N spin was also found in a confined space.


Subject(s)
Coordination Complexes/chemistry , Fullerenes/chemistry , Hydrocarbons, Cyclic/chemistry , Spin Labels , Yttrium/chemistry , Aza Compounds/chemistry , Density Functional Theory , Molecular Conformation , Phase Transition , Temperature , Thermodynamics
19.
Small ; 15(48): e1901522, 2019 11.
Article in English | MEDLINE | ID: mdl-31131986

ABSTRACT

Endohedral metallofullerenes exhibit combined properties from carbon cages as well as internal metal moieties and have great potential in a wide range of applications as molecule materials. Along with the breakthrough of mass production of metallofullerenes, their applied research has been greatly developed with more and more new functions and practical applications. For gadolinium metallofullerenes, their water-soluble derivatives have been demonstrated with antitumor activity and unprecedented tumor vascular-targeting therapy. Metallofullerene water-soluble derivatives also can be applied to treat reactive oxygen species (ROS)-induced diseases due to their high antioxidative activity. For magnetic metallofullerenes, the internal electron spin and metal species bring about spin sensitivity, molecular magnets, and spin quantum qubits, which have many promising applications. Metallofullerenes are significant candidates for fabricating useful electronic devices because of their various electronic structures. This Review provides a summary of the metallofullerene studies reported recently, in the fields of tumor inhibition, tumor vascular-targeting therapies, antioxidative activity, spin probes, single-molecule magnets, spin qubits, and electronic devices. This is not an exhaustive summary and there are many other important study results regarding metallofullerenes. All of this research has revealed the irreplaceable role of metallofullerene materials.


Subject(s)
Electronics , Fullerenes/chemistry , Magnetics , Metals/chemistry , Nanomedicine , Animals , Humans , Neoplasms/therapy
20.
Inorg Chem ; 58(12): 8162-8168, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31124674

ABSTRACT

We synthesized and isolated two paramagnetic metallofullerenes of La@C72 and Y@C72 with different fullerene cages, which were characterized by electron paramagnetic resonance (EPR) spectroscopy and theoretical calculations. DFT calculations disclosed two possible isomers of La/Y@C72 with C72- C2 and C72- C2v cages, both of which have similar thermodynamic stability and one pair of fused pentagons. Their paramagnetic properties were then studied by EPR spectroscopy, and the obtained EPR signals were analyzed with very different hyperfine coupling constants, revealing distinct electron spin distributions for these two species. Furthermore, the experimental coupling constants were compared with those of calculated coupling constants, and comparison results revealed that the produced La@C72 has a C72- C2v cage and Y@C72 has a C72- C2 cage. These studies illustrate that the electron spin can be used as a probe to identify metallofullerene structure due to the susceptibility of spin-metal couplings. The successful isolation and characterizations of La@C72 and Y@C72 with such a small C72 cage reveal their stability that is important for application as paramagnetic molecule materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...