Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 613, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286708

ABSTRACT

HMG protein Tox4 is a regulator of PP1 phosphatases with unknown function in development. Here we show that Tox4 conditional knockout in mice reduces thymic cellularity, partially blocks T cell development, and decreases ratio of CD8 to CD4 through decreasing proliferation and increasing apoptosis of CD8 cells. In addition, single-cell RNA-seq discovered that Tox4 loss also impairs proliferation of the fast-proliferating double positive (DP) blast population within DP cells in part due to downregulation of genes critical for proliferation, notably Cdk1. Moreover, genes with high and low expression level are more dependent on Tox4 than genes with medium expression level. Mechanistically, Tox4 may facilitate transcriptional reinitiation and restrict elongation in a dephosphorylation-dependent manner, a mechanism that is conserved between mouse and human. These results provide insights into the role of TOX4 in development and establish it as an evolutionarily conserved regulator of transcriptional elongation and reinitiation.


Subject(s)
CD8-Positive T-Lymphocytes , Thymus Gland , Animals , Mice , Humans , Cell Differentiation/genetics
2.
Commun Biol ; 5(1): 300, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365735

ABSTRACT

TOX4 is one of the regulatory factors of PP1 phosphatases with poorly understood functions. Here we show that chromatin occupancy pattern of TOX4 resembles that of RNA polymerase II (Pol II), and its loss increases cellular level of C-terminal domain (CTD) phosphorylated Pol II but mainly decreases Pol II occupancy on promoters. In addition, elongation rate analyses by 4sUDRB-seq suggest that TOX4 restricts pause release and early elongation but promotes late elongation. Moreover, TT-seq analyses indicate that TOX4 loss mainly decreases transcriptional output. Mechanistically, TOX4 may restrict pause release through facilitating CTD serine 2 and DSIF dephosphorylation, and promote Pol II recycling and reinitiation through facilitating CTD serines 2 and 5 dephosphorylation. Furthermore, among the PP1 phosphatases, TOX4 preferentially binds PP1α and is capable of facilitating Pol II CTD dephosphorylation in vitro. These results lay the foundation for a better understanding of the role of TOX4 in transcriptional regulation.


Subject(s)
Gene Expression Regulation , Neoplasm Proteins/metabolism , RNA Polymerase II , Chromatin/genetics , Humans , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...