Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 8(6): 810-23, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25576575

ABSTRACT

Heterogeneously integrated and miniaturized neural sensing microsystems are crucial for brain function investigation. In this paper, a 2.5D heterogeneously integrated bio-sensing microsystem with µ-probes and embedded through-silicon-via (TSVs) is presented for high-density neural sensing applications. This microsystem is composed of µ-probes with embedded TSVs, 4 dies and a silicon interposer. For capturing 16-channel neural signals, a 24 × 24 µ-probe array with embedded TSVs is fabricated on a 5×5 mm(2) chip and bonded on the back side of the interposer. Thus, each channel contains 6 × 6 µ -probes with embedded TSVs. Additionally, the 4 dies are bonded on the front side of the interposer and designed for biopotential acquisition, feature extraction and classification via low-power analog front-end (AFE) circuits, area-power-efficient analog-to-digital converters (ADCs), configurable discrete wavelet transforms (DWTs), filters, and a MCU. An on-interposer bus ( µ-SPI) is designed for transferring data on the interposer. Finally, the successful in-vivo test demonstrated the proposed 2.5D heterogeneously integrated bio-sensing microsystem. The overall power of this microsystem is only 676.3 µW for 16-channel neural sensing.


Subject(s)
Neurophysiological Monitoring/instrumentation , Neurophysiological Monitoring/methods , Remote Sensing Technology/instrumentation , Remote Sensing Technology/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...