Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1213476, 2023.
Article in English | MEDLINE | ID: mdl-38078079

ABSTRACT

Effective weed control in the field is essential for maintaining favorable growing conditions and rapeseed yields. Sulfonylurea herbicides are one kind of most widely used herbicides worldwide, which control weeds by inhibiting acetolactate synthase (ALS). Molecular markers have been designed from polymorphic sites within the sequences of ALS genes, aiding marker-assisted selection in breeding herbicide-resistant rapeseed cultivars. However, most of them are not breeder friendly and have relatively limited application due to higher costs and lower throughput in the breeding projects. The aims of this study were to develop high throughput kompetitive allele-specific PCR (KASP) assays for herbicide resistance. We first cloned and sequenced BnALS1 and BnALS3 genes from susceptible cultivars and resistant 5N (als1als1/als3als3 double mutant). Sequence alignments of BnALS1 and BnALS3 genes for cultivars and 5N showed single nucleotide polymorphisms (SNPs) at positions 1676 and 1667 respectively. These two SNPs for BnALS1 and BnALS3 resulted in amino acid substitutions and were used to develop a KASP assay. These functional markers were validated in three distinct BC1F2 populations. The KASP assay developed in this study will be valuable for the high-throughput selection of elite materials with high herbicide resistance in rapeseed breeding programs.

2.
Cell Mol Biol Lett ; 28(1): 63, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543634

ABSTRACT

BACKGROUND: Nitrogen (N), phosphorus (P) and potassium (K) are critical macronutrients in crops, such that deficiency in any of N, P or K has substantial effects on crop growth. However, the specific commonalities of plant responses to different macronutrient deficiencies remain largely unknown. METHODS: Here, we assessed the phenotypic and physiological performances along with whole transcriptome and metabolomic profiles of rapeseed seedlings exposed to N, P and K deficiency stresses. RESULTS: Quantities of reactive oxygen species were significantly increased by all macronutrient deficiencies. N and K deficiencies resulted in more severe root development responses than P deficiency, as well as greater chlorophyll content reduction in leaves (associated with disrupted chloroplast structure). Transcriptome and metabolome analyses validated the macronutrient-specific responses, with more pronounced effects of N and P deficiencies on mRNAs, microRNAs (miRNAs), circular RNAs (circRNAs) and metabolites relative to K deficiency. Tissue-specific responses also occurred, with greater effects of macronutrient deficiencies on roots compared with shoots. We further uncovered a set of common responders with simultaneous roles in all three macronutrient deficiencies, including 112 mRNAs and 10 miRNAs involved in hormonal signaling, ion transport and oxidative stress in the root, and 33 mRNAs and 6 miRNAs with roles in abiotic stress response and photosynthesis in the shoot. 27 and seven common miRNA-mRNA pairs with role in miRNA-mediated regulation of oxidoreduction processes and ion transmembrane transport were identified in all three macronutrient deficiencies. No circRNA was responsive to three macronutrient deficiency stresses, but two common circRNAs were identified for two macronutrient deficiencies. Combined analysis of circRNAs, miRNAs and mRNAs suggested that two circRNAs act as decoys for miR156 and participate in oxidoreduction processes and transmembrane transport in both N- and P-deprived roots. Simultaneously, dramatic alterations of metabolites also occurred. Associations of RNAs with metabolites were observed, and suggested potential positive regulatory roles for tricarboxylic acids, azoles, carbohydrates, sterols and auxins, and negative regulatory roles for aromatic and aspartate amino acids, glucosamine-containing compounds, cinnamic acid, and nicotianamine in plant adaptation to macronutrient deficiency. CONCLUSIONS: Our findings revealed strategies to rescue rapeseed from macronutrient deficiency stress, including reducing the expression of non-essential genes and activating or enhancing the expression of anti-stress genes, aided by plant hormones, ion transporters and stress responders. The common responders to different macronutrient deficiencies identified could be targeted to enhance nutrient use efficiency in rapeseed.


Subject(s)
Brassica napus , MicroRNAs , Potassium Deficiency , Brassica napus/genetics , Brassica napus/metabolism , Phosphorus , Potassium Deficiency/genetics , Nitrogen/metabolism , Multiomics , Transcriptome , Potassium/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Plant
3.
Genes (Basel) ; 13(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36292566

ABSTRACT

Fatty acid (FA) composition determines the quality of oil from oilseed crops, and thus is a major target for genetic improvement. FAD2 (Fatty acid dehydrogenase 2) and FAE1 (fatty acid elongase 1) are critical FA synthetic genes, and have been the focus of genetic manipulation to alter fatty acid composition in oilseed plants. In this study, to improve the nutritional quality of rapeseed cultivar CY2 (about 50% oil content; of which 40% erucic acid), we generated novel knockout plants by CRISPR/Cas9 mediated genome editing of BnFAD2 and BnFAE1 genes. Two guide RNAs were designed to target one copy of the BnFAD2 gene and two copies of the BnFAE1 gene, respectively. A number of lines with mutations at three target sites of BnFAD2 and BnFAE1 genes were identified by sequence analysis. Three of these lines showed mutations in all three target sites of the BnFAD2 and BnFAE1 genes. Fatty acid composition analysis of seeds revealed that mutations at all three sites resulted in significantly increased oleic acid (70-80%) content compared with that of CY2 (20%), greatly reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Our results confirmed that the CRISPR/Cas9 system is an effective tool for improving this important trait.


Subject(s)
Brassica napus , Brassica napus/genetics , Gene Editing/methods , Erucic Acids , Fatty Acids/genetics , Fatty Acid Elongases/genetics , CRISPR-Cas Systems , Plants, Genetically Modified/genetics , Fatty Acids, Unsaturated , Oleic Acid , Oxidoreductases/genetics
4.
J Exp Bot ; 72(22): 7729-7742, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34397079

ABSTRACT

In soybean, heterosis achieved through the three-line system has been gradually applied in breeding to increase yield, but the underlying molecular mechanism remains unknown. We conducted a genetic analysis using the pollen fertility of offspring of the cross NJCMS1A×NJCMS1C. All the pollen of F1 plants was semi-sterile; in F2, the ratio of pollen-fertile plants to pollen-semi-sterile plants was 208:189. This result indicates that NJCMS1A is gametophyte sterile, and the fertility restoration of NJCMS1C to NJCMS1A is a quality trait controlled by a single gene locus. Using bulked segregant analysis, the fertility restorer gene Rf in NJCMS1C was located on chromosome 16 between the markers BARCSOYSSR_16_1067 and BARCSOYSSR_16_1078. Sequence analysis of genes in that region showed that GmPPR576 was non-functional in rf cultivars. GmPPR576 has one functional allele in Rf cultivars but three non-functional alleles in rf cultivars. Phylogenetic analysis showed that the GmPPR576 locus evolved rapidly with the presence of male-sterile cytoplasm. GmPPR576 belongs to the RFL fertility restorer gene family and is targeted to the mitochondria. GmPPR576 was knocked out in soybean N8855 using CRISPR/Cas9. The T1 plants showed sterile pollen, and T2 plants produced few pods at maturity. The results indicate that GmPPR576 is the fertility restorer gene of NJCMS1A.


Subject(s)
Glycine max , Plant Infertility , Cytoplasm , Fertility/genetics , Phylogeny , Plant Infertility/genetics , Glycine max/genetics
5.
Funct Integr Genomics ; 21(1): 43-57, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33404916

ABSTRACT

In soybean, only one mitochondrial genome of cultispecies has been completely obtained. To explore the effect of mitochondrial genome on soybean cytoplasmic male sterility (CMS), two CMS lines and three maintainer lines were used for sequencing. Comparative analysis showed that mitochondrial genome of the CMS line was more compact than that of its maintainer line, but genes were highly conserved. Conserved and unique sequence coexisted in the genomes. Mitochondrial genomes contained different sequence lengths and copy numbers of repeats between CMS line and maintainer line. Large and short repeats mediated intramolecular and intermolecular recombination in mitochondria. Unique sequences and genes were also involved in recombination process and constituted a complex network. orf178 and orf261 were identified as CMS-associated candidate genes. They had sequence characteristics of reported CMS genes in other crops and could be transcribed in CMS lines but not in maintainer lines. This report reveals mitochondrial genome of soybean CMS lines and compares complete mitochondrial sequence between CMS lines and their maintainer lines. The information will be helpful in further understanding the characteristics of soybean mitochondrial genome and the mechanism underlying CMS.


Subject(s)
Genome, Mitochondrial , Glycine max/genetics , Plant Infertility , Conserved Sequence , Genome, Plant , Open Reading Frames , Recombination, Genetic , Selective Breeding , Glycine max/physiology
6.
3 Biotech ; 9(1): 22, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30622860

ABSTRACT

Cytoplasmic male sterility (CMS) plays an important role in the production of soybean hybrid seeds. MicroRNAs (miRNAs) are a class of non-coding endogenous ~ 21 nt small RNAs that play crucial roles in flower and pollen development by targeting genes in plants. To dissect the function of miRNAs in soybean CMS, a total of 558 known miRNAs, 10 novel miRNAs, and 466 target genes were identified in flower buds of the soybean CMS line NJCMS1A and its restorer line NJCMS1C through small RNA sequencing and degradome analysis. In addition, miRNA-mediated editing events were also observed, and the two most frequently observed editing types (A → G and C → U) were validated by cloning and sequencing. And as the base editing occurred, some targets were filtered, such as gma-miR2118b-P6GT with Glyma.08G122000.2. Further integrated analysis of transcriptome and small RNA found some miRNAs and their targets' expression patterns showing a negative correlation, such as gma-miR156b/GmSPL9a and gma-miR4413b/GmPPR. Furthermore, opposite expression pattern was observed between gma-miR156b and GmSPL9 during early stage of flower bud development. Taken together, the regulatory network of gma-miR156b/GmSPL9 and gma-miR4413b/GmPPR with flower bud development in soybean CMS was developed. Most importantly, previous reports showed that these targets might be related to pollen development and male sterility, suggesting that both conserved and species-specific miRNAs might act as regulators of flower bud development in soybean CMS. These findings may provide a better understanding of the miRNA-mediated regulatory networks of CMS mechanisms in soybean.

7.
BMC Genomics ; 19(1): 663, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30208848

ABSTRACT

BACKGROUND: Cytoplasmic male sterility (CMS) is a natural phenomenon of pollen abortion caused by the interaction between cytoplasmic genes and nuclear genes. CMS is a simple and effective pollination control system, and plays an important role in crop heterosis utilization. Circular RNAs (circRNAs) are a vital type of non-coding RNAs, which play crucial roles in microRNAs (miRNAs) function and post-transcription control. To explore the expression profile and possible functions of circRNAs in the soybean CMS line NJCMS1A and its maintainer NJCMS1B, high-throughput deep sequencing coupled with RNase R enrichment strategy was conducted. RESULTS: CircRNA libraries were constructed from flower buds of NJCMS1A and its maintainer NJCMS1B with three biological replicates. A total of 2867 circRNAs were identified, with 1009 circRNAs differentially expressed between NJCMS1A and NJCMS1B based on analysis of high-throughput sequencing. Of the 12 randomly selected circRNAs with different expression levels, 10 showed consistent expression patterns based on high-throughput sequencing and quantitative real-time PCR analyses. Tissue specific expression patterns were also verified with two circRNAs by quantitative real-time PCR. Most parental genes of differentially expressed circRNAs were mainly involved in biological processes such as metabolic process, biological regulation, and reproductive process. Moreover, 83 miRNAs were predicted from the differentially expressed circRNAs, some of which were strongly related to pollen development and male fertility; The functions of miRNA targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and the target mRNAs were significantly enriched in signal transduction and programmed cell death. Furthermore, a total of 165 soybean circRNAs were predicted to contain at least one internal ribosome entry site (IRES) element and an open reading frame, indicating their potential to encode polypeptides or proteins. CONCLUSIONS: Our study indicated that the circRNAs might participate in the regulation of flower and pollen development, which could provide a new insight into the molecular mechanisms of CMS in soybean.


Subject(s)
Cytoplasm/genetics , Glycine max/cytology , Glycine max/genetics , High-Throughput Nucleotide Sequencing , Plant Infertility/genetics , RNA/genetics , Sequence Analysis, RNA , Base Sequence , Gene Expression Profiling , Gene Ontology , Pollen/growth & development , RNA, Circular , Glycine max/growth & development
8.
BMC Genomics ; 18(1): 596, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28806912

ABSTRACT

BACKGROUND: DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. RESULTS: In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. CONCLUSIONS: Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.


Subject(s)
Cytoplasm/metabolism , DNA Methylation , Genomics , Glycine max/cytology , Glycine max/genetics , Plant Infertility/genetics , DNA Transposable Elements/genetics , Gene Expression Regulation, Plant , Gene Ontology , Genes, Plant/genetics , Molecular Sequence Annotation , Species Specificity , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...