Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38400414

ABSTRACT

The global population is progressively entering an aging phase, with population aging likely to emerge as one of the most-significant social trends of the 21st Century, impacting nearly all societal domains. Addressing the challenge of assisting vulnerable groups such as the elderly and disabled in carrying or transporting objects has become a critical issue in this field. We developed a mobile Internet of Things (IoT) device leveraging Ultra-Wideband (UWB) technology in this context. This research directly benefits vulnerable groups, including the elderly, disabled individuals, pregnant women, and children. Additionally, it provides valuable references for decision-makers, engineers, and researchers to address real-world challenges. The focus of this research is on implementing UWB technology for precise mobile IoT device localization and following, while integrating an autonomous following system, a robotic arm system, an ultrasonic obstacle-avoidance system, and an automatic leveling control system into a comprehensive experimental platform. To counteract the potential UWB signal fluctuations and high noise interference in complex environments, we propose a hybrid filtering-weighted fusion back propagation (HFWF-BP) neural network localization algorithm. This algorithm combines the characteristics of Gaussian, median, and mean filtering, utilizing a weighted fusion back propagation (WF-BP) neural network, and, ultimately, employs the Chan algorithm to achieve optimal estimation values. Through deployment and experimentation on the device, the proposed algorithm's data preprocessing effectively eliminates errors under multi-factor interference, significantly enhancing the precision and anti-interference capabilities of the localization and following processes.

2.
Int J Geriatr Psychiatry ; 38(8): e5979, 2023 08.
Article in English | MEDLINE | ID: mdl-37548525

ABSTRACT

INTRODUCTION: At rest, the brain's higher cognitive systems engage in correlated activity patterns, forming networks. With mild cognitive impairment (MCI), it is essential to understand how functional connectivity within and between resting-state networks changes. This study used resting-state functional connectivity to identify significant differences within and between the cingulo-opercular network (CON) and default mode network (DMN). METHODS: We assessed cognitive function in patients using the Chinese version of the Alzheimer's disease assessment scale-Cognitive subscale (ADAS-Cog). A group of MCI subjects (ages 60-83 years, n = 45) was compared to age-matched healthy controls (n = 70). Resting-state functional connectivity was used to determine functional connectivity strength within and between the CON and DMN. RESULTS: Compared to healthy controls, the MCI group showed significantly lower functional connectivity within the CON (F = 10.76, df = 1, p = 0.001, FDR adjusted p = 0.003). Additionally, the MCI group displayed no distinct differences in functional connectivity within DMN (F = 0.162, df = 1, p = 0.688, FDR adjusted p = 0.688) and between CON and DMN (F = 2.270, df = 1, p = 0.135, FDR adjusted p = 0.262). Moreover, we found no correlation between ADAS-Cog and within- or between-connectivity metrics among subjects with MCI. CONCLUSIONS: Our findings indicate that specific patterns of hypoconnectivity within CON circuitry may characterize MCI relative to healthy controls. This work improves our understanding of network dysfunction underlying MCI and could inform more targeted treatment.


Subject(s)
Brain , Cognitive Dysfunction , Humans , Magnetic Resonance Imaging , Nerve Net , Cognitive Dysfunction/psychology , Cognition
4.
Psychiatry Res Neuroimaging ; 327: 111557, 2022 12.
Article in English | MEDLINE | ID: mdl-36327866

ABSTRACT

This study was the first to explore whether abnormal spontaneous neuronal activities exist in patients in the long-term remission stage of major depressive disorder (MDD). We recruited 34 MDD patients (PTs) and 30 sex- and age-matched healthy controls (HCs). Resting-state functional magnetic resonance imaging (rs-fMRI) was employed to scan all subjects' brain regions, and independent two-sample t-test was used for regional homogeneity (ReHo) and functional connectivity (FC) analysis. Compared with the HCs, the ReHo of PTs increased in the right superior frontal gyrus and left middle frontal gyrus, and decreased in the right anterior and collateral cingulate gyrus, right middle frontal gyrus, right inferior parietal lobule. The cingulate gyrus as a mask showed that FC of the cingulate gyrus with the bilateral lingual gyrus and the right middle temporal gyrus decreased, and FC with the left supper frontal gyrus increased. The correlation analysis revealed no significant correlation between the abnormal ReHo and HAMD-24 scores in PTs. The ReHo of inferior parietal lobule and the duration of remission were positively correlated. We concluded that the spontaneous neuronal activities might be disrupted in MDD patients in the long-term remission stage. Our findings provided new reasons for MDD relapse.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Brain , Magnetic Resonance Imaging/methods , Brain Mapping , Parietal Lobe/diagnostic imaging
5.
Front Aging Neurosci ; 14: 838161, 2022.
Article in English | MEDLINE | ID: mdl-35663572

ABSTRACT

Amnestic mild cognitive impairment (aMCI) is a clinical subtype of MCI, which is known to have a high risk of developing Alzheimer's disease (AD). Although neuroimaging studies have reported brain abnormalities in patients with aMCI, concurrent structural and functional patterns in patients with aMCI were still unclear. In this study, we combined voxel-based morphometry (VBM), amplitude of low-frequency fluctuations (ALFFs), regional homogeneity (Reho), and resting-state functional connectivity (RSFC) approaches to explore concurrent structural and functional alterations in patients with aMCI. We found that, compared with healthy controls (HCs), both ALFF and Reho were decreased in the right superior frontal gyrus (SFG_R) and right middle frontal gyrus (MFG_R) of patients with aMCI, and both gray matter volume (GMV) and Reho were decreased in the left inferior frontal gyrus (IFG_L) of patients with aMCI. Furthermore, we took these overlapping clusters from VBM, ALFF, and Reho analyses as seed regions to analyze RSFC. We found that, compared with HCs, patients with aMCI had decreased RSFC between SFG_R and the right temporal lobe (subgyral) (TL_R), the MFG_R seed and left superior temporal gyrus (STG_L), left inferior parietal lobule (IPL_L), and right anterior cingulate cortex (ACC_R), the IFG_L seed and left precentral gyrus (PRG_L), left cingulate gyrus (CG_L), and IPL_L. These findings highlighted shared imaging features in structural and functional magnetic resonance imaging (MRI), suggesting that SFG_R, MFG_R, and IFG_L may play a major role in the pathophysiology of aMCI, which might be useful to better understand the underlying neural mechanisms of aMCI and AD.

6.
Sci Rep ; 7: 40529, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28084407

ABSTRACT

We present a paradigm, combining chemical profiling, absorbed components detection in plasma and network analysis, for investigating the pharmacology of combination drugs and complex formulae. On the one hand, the composition of the formula is investigated comprehensively via mass spectrometry analysis, followed by pharmacological studies of the fractions as well as the plasma concentration testing for the ingredients. On the other hand, both the candidate target proteins and the effective ingredients of the formula are predicted via analyzing the corresponding networks. The most probable active compounds can then be identified by combining the experimental results with the network analysis. In order to illustrate the performance of the paradigm, we apply it to the Danggui-Jianzhong formula (DJF) from traditional Chinese medicine (TCM) and predict 4 probably active ingredients, 3 of which are verified experimentally to display anti-platelet activity, i.e., (Z)-Ligustilide, Licochalcone A and Pentagalloylglucose. Moreover, the 3-compound formulae composed of these 3 chemicals show better anti-platelet activity than DJF. In addition, the paradigm predicts the association between these 3 compounds and COX-1, and our experimental validation further shows that such association comes from the inhibitory effects of the compounds on the activity of COX-1.


Subject(s)
Drug Prescriptions , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Adenosine Diphosphate/pharmacology , Animals , Cyclooxygenase 1/metabolism , Drugs, Chinese Herbal/chemistry , Platelet Activation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Reference Standards , Thrombin/pharmacology , Treatment Outcome
7.
Article in English | MEDLINE | ID: mdl-27956922

ABSTRACT

The genus Psoralea, which belongs to the family Fabaceae, comprises ca. 130 species distributed all over the world, and some of the plants are used as folk medicine to treat various diseases. Psoralea corylifolia is a typical example, whose seeds have been widely used in many traditional Chinese medicine formulas for the treatment of various diseases such as leucoderma and other skin diseases, cardiovascular diseases, nephritis, osteoporosis, and cancer. So, the chemical and pharmacological studies on this genus were performed in the past decades. Here, we give a mini review on this genus about its phytochemical and pharmacological studies from 1910 to 2015.

SELECTION OF CITATIONS
SEARCH DETAIL
...