Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
3D Print Addit Manuf ; 8(1): 1-13, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-36655178

ABSTRACT

Three-dimensional (3D) printing technology has been applied to fabricate bone tissue engineering scaffolds for a wide range of materials with precisely control over scaffold structures. Coral is a potential bone repair and bone replacement material. Due to the natural source limitation of coral, we developed a fabrication protocol for 3D printing of calcium carbonate (CaCO3) nanoparticles for coral replacement in the application of bone tissue engineering. Up to 80% of CaCO3 nanoparticles can be printed with high resolution using poly-l-lactide as a blender. The scaffolds were subjected to a controlled hydrothermal process for incomplete conversion of carbonate to phosphate to produce CaCO3 scaffold covered by hydroxyapatite (HA) to modify the biocompatibility and degradation of CaCO3/HA scaffolds. X-ray diffraction and Fourier transform infrared spectroscopy showed that HA was converted and attached to the surface of the scaffold, and the surface morphology and microstructure were studied using a scanning electron microscope. To confirm the bone regeneration performance of the scaffold, cell proliferation and osteogenic differentiation of MC3T3 cells on the scaffold were evaluated. In addition, in vivo experiments showed that CaCO3/HA scaffolds can promote bone growth and repairing process and has high potential in bone tissue engineering. ClinicalTrials.gov ID: SH9H-2020-A603.

SELECTION OF CITATIONS
SEARCH DETAIL