Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
PLoS One ; 19(6): e0304149, 2024.
Article in English | MEDLINE | ID: mdl-38848430

ABSTRACT

Glioblastoma, the most aggressive form of brain cancer, poses a significant global health challenge with a considerable mortality rate. With the predicted increase in glioblastoma incidence, there is an urgent need for more effective treatment strategies. In this study, we explore the potential of caerin 1.1 and 1.9, host defence peptides derived from an Australian tree frog, in inhibiting glioblastoma U87 and U118 cell growth. Our findings demonstrate the inhibitory impact of caerin 1.1 and 1.9 on cell growth through CCK8 assays. Additionally, these peptides effectively curtail the migration of glioblastoma cells in a cell scratch assay, exhibiting varying inhibitory effects among different cell lines. Notably, the peptides hinder the G0/S phase replication in both U87 and U118 cells, pointing to their impact on the cell cycle. Furthermore, caerin 1.1 and 1.9 show the ability to enter the cytoplasm of glioblastoma cells, influencing the morphology of mitochondria. Proteomics experiments reveal intriguing insights, with a decrease in CHI3L1 expression and an increase in PZP and JUNB expression after peptide treatment. These proteins play roles in cell energy metabolism and inflammatory response, suggesting a multifaceted impact on glioblastoma cells. In conclusion, our study underscores the substantial anticancer potential of caerin 1.1 and 1.9 against glioblastoma cells. These findings propose the peptides as promising candidates for further exploration in the realm of glioblastoma management, offering new avenues for developing effective treatment strategies.


Subject(s)
Cell Proliferation , Down-Regulation , Glioblastoma , Mitochondria , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Cell Respiration/drug effects , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/metabolism , Cell Movement/drug effects
2.
Int Dent J ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38866671

ABSTRACT

OBJECTIVES: With rising rates of maxillofacial fracture, postoperative infection following rigid internal fixation is an important issue that requires immediate resolution. It is important to explore an alternative antibacterial method apart from conventional antibiotics. A controlled experiment was conducted to evaluate the effectiveness of a caerin 1.9 peptide-coated titanium plate in reducing mandibular infection in New Zealand (NZ) rabbits, aiming to minimise the risk of post-metallic implantation infection. METHODS: Twenty-two NZ rabbits were randomly divided into 3 groups. The experiment group received caerin 1.9 peptide-coated titanium plates and mixed oral bacteria exposure. The control group received normal titanium plates with mixed oral bacteria exposure. The untreated group served as a control to prove that bacteria in the mouth can cause infection. Weight, temperature, hepatic function, and C-reactive protein levels were measured. Wound and bone conditions were evaluated. Further analysis included local infection, anatomic conditions, histology, and bacterial load. RESULTS: No significant differences were found in temperature, weight, blood alanine aminotransferase, and C-reactive protein levels amongst the 3 groups. The experiment group showed the lowest amount of bacterial RNA in wounds. Additionally, the experiment group had higher peripheral lymphocyte counts compared to the control group and lower neutrophil counts on the third and seventh day postoperatively. Histologic analysis revealed lower levels of inflammatory cell infiltration, bleeding, and areas of necrosis in the experimental group compared with the controls. CONCLUSIONS: A caerin 1.9-coated titanium plate is able to inhibit bacterial growth in a NZ rabbit mandibular mixed bacteria infection model and is worth further investigation.

3.
J Fish Biol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747400

ABSTRACT

Fish species of the genus Amphiprion (Perciformes: Pomacentridae) seek protection from predators among the tentacles of sea anemones as their natural habitat, where they live essentially unharmed from stinging by the host's nematocysts. The skin mucus of these anemonefish has been suggested as a protective mechanism that prevents the discharge of the nematocysts upon contact. Whereas some anemonefish species seem to produce their own protective mucous coating, others may acquire mucus (or biomolecules within) from the sea anemone during an acclimation period. In controlled experiments, we show that Amphiprion ocellaris acclimated successfully to their natural host anemone species Stichodactyla gigantea, and also to Stichodactyla haddoni, and in some cases Heteractis crispa, neither of which are natural host species. No symbiosis was observed for three other anemone species tested, Entacmaea quadricolor, Macrodactyla doreensis, and Heteractis malu. We explored the skin mucous protein profile from naive and experienced A. ocellaris during their acclimation to natural and unnatural host anemones. We confidently report the presence of metabolic and structural proteins in the skin mucus of all samples, likely involved in immunological defense, molecular transport, stress response, and signal transduction. For those anemonefish that established symbiosis, there was a clear increase in ribosomal-type proteins. We additionally provide evidence for the presence of anemone proteins only in the skin mucus of individuals that established symbiosis. Our results support previous speculation of the role of skin mucous-associated proteins in anemonefish-anemone symbiosis. Further exploration of these mucosal proteins could reveal the mechanism of anemonefish acclimation to host anemones.

4.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38702075

ABSTRACT

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Subject(s)
Adipocytes , Adipogenesis , Body Fat Distribution , Humans , Adipocytes/metabolism , Male , Female , Adipogenesis/genetics , Body Mass Index , Adult , Gene Regulatory Networks , Middle Aged , Bayes Theorem , Waist-Hip Ratio , Adipose Tissue/metabolism , Wnt Signaling Pathway/genetics , Gene Expression Regulation/genetics , Systems Biology/methods
5.
Discov Nano ; 19(1): 44, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472539

ABSTRACT

Thanks to high performance above room temperature, antimonide laser diodes have shown great potential for broad application in the mid-infrared spectral region. However, the laser`s performance noticeably deteriorates due to the reduction of carrier confinement with increased emission wavelength. In this paper, a novel active region with higher carrier confinements both of electron and hole, by the usage of an indirect bandgap material of Al0.5GaAs0.04Sb as the quantum barrier, was put up to address the poor carrier confinement of GaSb-based type-I multi-quantum-well (MQW) diode lasers emission wavelength above 2.5 µm. The carrier confinement and the differential gain in the designed active region are enhanced as a result of the first proposed usage of an indirect-gap semiconductor as the quantum barrier with larger band offsets in conduction and valence bands, leading to high internal quantum efficiency and low threshold current density of our lasers. More importantly, the watt-level output optical power is obtained at a low injection current compared to the state of the art. Our work demonstrates a direct and cost-effective solution to address the poor carrier confinement of the GaSb-based MQW lasers, thereby achieving high-power mid-infrared lasers.

6.
Opt Express ; 31(21): 34011-34020, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859166

ABSTRACT

In this paper, we put up a robust design of a stable single-mode-operated GaSb-based laser diode emitting around 1950nm. This novel design structure with socketed ridge-waveguide enables a simple fabrication and batch production of mid-infrared laser diodes on account of the mere usage of standard photolithography. By introducing micron-level index perturbations distributed along the ridge waveguide, the threshold gains of different FP modes are modulated. Four geometrical parameters of the perturbations are systematically optimized by analyzing the reflection spectrum to get a robust single-mode characteristic. Based on the optimized geometrical parameters, 1-mm long uncoated lasers are carried out and exhibit a stable single longitudinal mode from 10 °C to 40 °C with a maximum output power of more than 10 mW. Thus, we prove the feasibility of the standard photolithography to manufacture the monolithic single-mode infrared laser source without regrowth process or nanoscale lithography.

7.
Microbiol Spectr ; 11(6): e0452022, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37819110

ABSTRACT

IMPORTANCE: Caerin 1.1 and caerin 1.9, natural antimicrobial peptides derived from tree frogs, have demonstrated the ability to inhibit the growth of antibiotic-resistant bacteria, comparable to certain widely used antibiotics. Additionally, these peptides exhibit the capacity to prevent or treat biofilms formed by bacteria in conjunction with bodily components. The mechanisms underlying their antibacterial effects were investigated through a mouse model of bacterial skin infection, utilizing proteomic analysis as a technological approach.


Subject(s)
Acinetobacter baumannii , Mice , Animals , Proteomics , Anti-Bacterial Agents/pharmacology , Peptides/pharmacology , Biofilms , Microbial Sensitivity Tests
8.
Breast Cancer Res ; 25(1): 114, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789381

ABSTRACT

BACKGROUND: About 20% of breast cancers in humans are basal-like, a subtype that is often triple-negative and difficult to treat. An effective translational model for basal-like breast cancer is currently lacking and urgently needed. To determine whether spontaneous mammary tumors in pet dogs could meet this need, we subtyped canine mammary tumors and evaluated the dog-human molecular homology at the subtype level. METHODS: We subtyped 236 canine mammary tumors from 3 studies by applying various subtyping strategies on their RNA-seq data. We then performed PAM50 classification with canine tumors alone, as well as with canine tumors combined with human breast tumors. We identified feature genes for human BLBC and luminal A subtypes via machine learning and used these genes to repeat canine-alone and cross-species tumor classifications. We investigated differential gene expression, signature gene set enrichment, expression association, mutational landscape, and other features for dog-human subtype comparison. RESULTS: Our independent genome-wide subtyping consistently identified two molecularly distinct subtypes among the canine tumors. One subtype is mostly basal-like and clusters with human BLBC in cross-species PAM50 and feature gene classifications, while the other subtype does not cluster with any human breast cancer subtype. Furthermore, the canine basal-like subtype recaptures key molecular features (e.g., cell cycle gene upregulation, TP53 mutation) and gene expression patterns that characterize human BLBC. It is enriched in histological subtypes that match human breast cancer, unlike the other canine subtype. However, about 33% of canine basal-like tumors are estrogen receptor negative (ER-) and progesterone receptor positive (PR+), which is rare in human breast cancer. Further analysis reveals that these ER-PR+ canine tumors harbor additional basal-like features, including upregulation of genes of interferon-γ response and of the Wnt-pluripotency pathway. Interestingly, we observed an association of PGR expression with gene silencing in all canine tumors and with the expression of T cell exhaustion markers (e.g., PDCD1) in ER-PR+ canine tumors. CONCLUSIONS: We identify a canine mammary tumor subtype that molecularly resembles human BLBC overall and thus could serve as a vital translational model of this devastating breast cancer subtype. Our study also sheds light on the dog-human difference in the mammary tumor histology and the hormonal cycle.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Humans , Dogs , Animals , Female , Breast Neoplasms/pathology , Biomarkers, Tumor/genetics , Receptor, ErbB-2/metabolism , Mammary Neoplasms, Animal/genetics , Receptors, Progesterone/metabolism
9.
bioRxiv ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37732278

ABSTRACT

BACKGROUND: Excess fat in the abdomen is a sexually dimorphic risk factor for cardio-metabolic disease. The relative storage between abdominal and lower-body subcutaneous adipose tissue depots is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Genome-wide association studies (GWAS) identified 346 loci near 495 genes associated with WHRadjBMI. Most of these genes have unknown roles in fat distribution, but many are expressed and putatively act in adipose tissue. We aimed to identify novel sex- and depot-specific drivers of WHRadjBMI using a systems genetics approach. METHODS: We used two independent cohorts of adipose tissue gene expression with 362 - 444 males and 147 - 219 females, primarily of European ancestry. We constructed sex- and depot- specific Bayesian networks to model the gene-gene interactions from 8,492 adipose tissue genes. Key driver analysis identified genes that, in silico and putatively in vitro, regulate many others, including the 495 WHRadjBMI GWAS genes. Key driver gene function was determined by perturbing their expression in human subcutaneous pre-adipocytes using lenti-virus or siRNA. RESULTS: 51 - 119 key drivers in each network were replicated in both cohorts. We used single-cell expression data to select replicated key drivers expressed in adipocyte precursors and mature adipocytes, prioritized genes which have not been previously studied in adipose tissue, and used public human and mouse data to nominate 53 novel key driver genes (10 - 21 from each network) that may regulate fat distribution by altering adipocyte function. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We selected seven genes whose expression is highly correlated with WHRadjBMI to further study their effects on adipogenesis/Wnt signaling (ANAPC2, PSME3, RSPO1, TYRO3) or mitochondrial function (C1QTNF3, MIGA1, PSME3, UBR1).Adipogenesis was inhibited in cells overexpressing ANAPC2 and RSPO1 compared to controls. RSPO1 results are consistent with a positive correlation between gene expression in the subcutaneous depot and WHRadjBMI, therefore lower relative storage in the subcutaneous depot. RSPO1 inhibited adipogenesis by increasing ß-catenin activation and Wnt-related transcription, thus repressing PPARG and CEBPA. PSME3 overexpression led to more adipogenesis than controls. In differentiated adipocytes, MIGA1 and UBR1 downregulation led to mitochondrial dysfunction, with lower oxygen consumption than controls; MIGA1 knockdown also lowered UCP1 expression. SUMMARY: ANAPC2, MIGA1, PSME3, RSPO1, and UBR1 affect adipocyte function and may drive body fat distribution.

10.
PeerJ ; 11: e15689, 2023.
Article in English | MEDLINE | ID: mdl-37637177

ABSTRACT

Background: The crown-of-thorns starfish (COTS; Acanthaster species) is a slow-moving corallivore protected by an extensive array of long, sharp toxic spines. Envenomation can result in nausea, numbness, vomiting, joint aches and sometimes paralysis. Small molecule saponins and the plancitoxin proteins have been implicated in COTS toxicity. Methods: Brine shrimp lethality assays were used to confirm the secretion of spine toxin biomolecules. Histological analysis, followed by spine-derived proteomics helped to explain the source and identity of proteins, while quantitative RNA-sequencing and phylogeny confirmed target gene expression and relative conservation, respectively. Results: We demonstrate the lethality of COTS spine secreted biomolecules on brine shrimp, including significant toxicity using aboral spine semi-purifications of >10 kDa (p > 0.05, 9.82 µg/ml), supporting the presence of secreted proteins as toxins. Ultrastructure observations of the COTS aboral spine showed the presence of pores that could facilitate the distribution of secreted proteins. Subsequent purification and mass spectrometry analysis of spine-derived proteins identified numerous secretory proteins, including plancitoxins, as well as those with relatively high gene expression in spines, including phospholipase A2, protease inhibitor 16-like protein, ependymin-related proteins and those uncharacterized. Some secretory proteins (e.g., vitellogenin and deleted in malignant brain tumor protein 1) were not highly expressed in spine tissue, yet the spine may serve as a storage or release site. This study contributes to our understanding of the COTS through functional, ultrastructural and proteomic analysis of aboral spines.


Subject(s)
Artemia , Proteomics , Animals , Arthralgia , Biological Assay , Biological Transport
11.
BioDrugs ; 37(5): 607-623, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37300748

ABSTRACT

Multidrug-resistant (MDR) bacteria are considered a health threat worldwide, and this problem is set to increase over the decades. The ESKAPE, a group of six pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. is the major source of concern due to their high death incidence and nosocomial acquired infection. Host defence peptides (HDPs) are a class of ribosomally synthesised peptides that have shown promising results in combating MDR, including the ESKAPE group, in- and outside bacterial biofilms. However, their poor pharmacokinetics in physiological mediums may impede HDPs from becoming viable clinical candidates. To circumvent this problem, chemical engineering of HDPs has been seen as an emergent approach to not only improve their pharmacokinetics but also their efficacy against pathogens. In this review, we explore several chemical modifications of HDPs that have shown promising results, especially against ESKAPE pathogens, and provide an overview of the current findings with respect to each modification.


Subject(s)
Antimicrobial Cationic Peptides , Enterococcus faecium , Humans , Klebsiella pneumoniae , Enterobacter , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology
12.
Biomed Pharmacother ; 164: 114891, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37209630

ABSTRACT

OBJECTIVE: The aim of this study was to analyze and compare the therapeutic effects of 131I-caerin 1.1 and 131I-c(RGD)2 on TE-1 esophageal cancer cell xenografts. METHODS: (1) The in vitro antitumor effects of the polypeptides caerin 1.1 and c(RGD)2 were verified by MTT and clonogenic assays. 131I-caerin 1.1 and 131I-c(RGD)2 were prepared by chloramine-T (Ch-T) direct labeling, and their basic properties were measured. The binding and elution of 131I-caerin 1.1, 131I-c(RGD)2, and Na131I (control group) in esophageal cancer TE-1 cells were studied through cell binding and elution assays. (2) The antiproliferative effect and cytotoxicity of 131I-caerin 1.1, 131I-c(RGD)2, Na131I, caerin 1.1 and c(RGD)2 on TE-1 cells were detected by Cell Counting Kit-8 (CCK-8) assay. (3) A nude mouse esophageal cancer (TE-1) xenograft model was established to study and compare the efficacy of 131I-caerin 1.1 and 131I-c(RGD)2 in internal radiation therapy for esophageal cancer. RESULTS: (1) Caerin 1.1 inhibited the in vitro proliferation of TE-1 cells in a concentration-dependent manner, with an IC50 of 13.00 µg/mL. The polypeptide c(RGD)2 had no evident inhibitory effect on the in vitro proliferation of TE-1 cells. Therefore, the antiproliferative effects of caerin 1.1 and c(RGD)2 on esophageal cancer cells were significantly different (P < 0.05). The clonogenic assay showed that the clonal proliferation of TE-1 cells decreased as the concentration of caerin 1.1 increased. Compared with the control group (drug concentration of 0 µg/mL), the caerin 1.1 group showed significantly lower clonal proliferation of TE-1 cells (P < 0.05). (2) The CCK-8 assay showed that 131I-caerin 1.1 inhibited the in vitro proliferation of TE-1 cells, while 131I-c(RGD)2 had no evident inhibitory effect on proliferation. The two polypeptides showed significantly different antiproliferative effects on esophageal cancer cells at higher concentrations (P < 0.05). Cell binding and elution assays showed that 131I-caerin 1.1 stably bound to TE-1 cells. The cell binding rate of 131I-caerin 1.1 was 15.8 % ± 1.09 % at 24 h and 6.95 % ± 0.22 % after 24 h of incubation and elution. The cell binding rate of 131I-c(RGD)2 was 0.06 % ± 0.02 % at 24 h and 0.23 % ± 0.11 % after 24 h of incubation and elution. (3) In the in vivo experiment, 3 days after the last treatment, the tumor sizes of the phosphate-buffered saline (PBS) group, caerin 1.1 group, c(RGD)2 group, 131I group, 131I-caerin 1.1 group, and 131I-c(RGD)2 group were 68.29 ± 2.67 mm3, 61.78 ± 3.58 mm3, 56.67 ± 5.65 mm3, 58.88 ± 1.71 mm3, 14.40 ± 1.38 mm3, and 60.14 ± 0.47 mm3, respectively. Compared with the other treatment groups, the 131I-caerin 1.1 group had significantly smaller tumor sizes (P < 0.001). After treatment, the tumors were isolated and weighed. The tumor weights in the PBS group, caerin 1.1 group, c(RGD)2 group, 131I group, 131I-caerin 1.1 group, and 131I-c(RGD)2 group were 39.50 ± 9.54 mg, 38.25 ± 5.38 mg, 38.35 ± 9.53 mg, 28.25 ± 8.50 mg, 9.50 ± 4.43 mg, and 34.75 ± 8.06 mg, respectively. The tumor weights in the 131I-caerin 1.1 group were significantly lighter than those in the other groups (P < 0.01). CONCLUSION: 131I-caerin 1.1 has tumor-targeting properties, is capable of targeted binding to TE-1 esophageal cancer cells, can be stably retained in tumor cells, and has an evident cytotoxic killing effect, while 131I-c(RGD)2 has no evident cytotoxic effect. 131I-caerin 1.1 better suppressed tumor cell proliferation and tumor growth than pure caerin 1.1, 131I-c(RGD)2, and pure c(RGD)2.


Subject(s)
Esophageal Neoplasms , Animals , Mice , Humans , Heterografts , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/metabolism , Peptides/pharmacology , Oligopeptides/pharmacology , Cell Line, Tumor , Cell Proliferation , Apoptosis
14.
bioRxiv ; 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-37034591

ABSTRACT

Background: About 20% of breast cancers in humans are basal-like, a subtype that is often triple negative and difficult to treat. An effective translational model for basal-like breast cancer (BLBC) is currently lacking and urgently needed. To determine if spontaneous mammary tumors in pet dogs could meet this need, we subtyped canine mammary tumors and evaluated the dog-human molecular homology at the subtype level. Methods: We subtyped 236 canine mammary tumors from 3 studies by applying various subtyping strategies on their RNA-seq data. We then performed PAM50 classification with canine tumors alone, as well as with canine tumors combined with human breast tumors. We investigated differential gene expression, signature gene set enrichment, expression association, mutational landscape, and other features for dog-human subtype comparison. Results: Our independent genome-wide subtyping consistently identified two molecularly distinct subtypes among the canine tumors. One subtype is mostly basal-like and clusters with human BLBC in cross-species PAM50 classification, while the other subtype does not cluster with any human breast cancer subtype. Furthermore, the canine basal-like subtype recaptures key molecular features (e.g., cell cycle gene upregulation, TP53 mutation) and gene expression patterns that characterize human BLBC. It is enriched histological subtypes that match human breast cancer, unlike the other canine subtype. However, about 33% of canine basal-like tumors are estrogen receptor negative (ER-) and progesterone receptor positive (PR+), which is rare in human breast cancer. Further analysis reveals that these ER-PR+ canine tumors harbor additional basal-like features, including upregulation of genes of interferon-γ response and of the Wnt-pluripotency pathway. Interestingly, we observed an association of PGR expression with gene silencing in all canine tumors, and with the expression of T cell exhaustion markers (e.g., PDCD1 ) in ER-PR+ canine tumors. Conclusions: We identify a canine mammary tumor subtype that molecularly resembles human BLBC overall, and thus could serve as a vital spontaneous animal model of this devastating breast cancer subtype. Our study also sheds light on the dog-human difference in the mammary tumor histology and the hormonal cycle.

15.
Toxins (Basel) ; 15(3)2023 02 21.
Article in English | MEDLINE | ID: mdl-36977061

ABSTRACT

The relative lack of marine venom pharmaceuticals can be anecdotally attributed to difficulties in working with venomous marine animals, including how to maintain venom bioactivity during extraction and purification. The primary aim of this systematic literature review was to examine the key factors for consideration when extracting and purifying jellyfish venom toxins to maximise their effectiveness in bioassays towards the characterisation of a single toxin.An up-to-date database of 119 peer-reviewed research articles was established for all purified and semi-purified venoms across all jellyfish, including their level of purification, LD50, and the types of experimental toxicity bioassay used (e.g., whole animal and cell lines). We report that, of the toxins successfully purified across all jellyfish, the class Cubozoa (i.e., Chironex fleckeri and Carybdea rastoni) was most highly represented, followed by Scyphozoa and Hydrozoa. We outline the best practices for maintaining jellyfish venom bioactivity, including strict thermal management, using the "autolysis" extraction method and two-step liquid chromatography purification involving size exclusion chromatography. To date, the box jellyfish C. fleckeri has been the most effective jellyfish venom model with the most referenced extraction methods and the most isolated toxins, including CfTX-A/B. In summary, this review can be used as a resource for the efficient extraction, purification, and identification of jellyfish venom toxins.


Subject(s)
Cnidarian Venoms , Cubozoa , Scyphozoa , Animals , Cnidarian Venoms/chemistry , Scyphozoa/metabolism , Cell Line , Chromatography, Gel
16.
Sci Rep ; 13(1): 3349, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849815

ABSTRACT

The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 µm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.


Subject(s)
Cone-Rod Dystrophies , Nerve Tissue , Animals , Radial Nerve , Proteomics , Starfish , Echinodermata
17.
Front Endocrinol (Lausanne) ; 14: 1020368, 2023.
Article in English | MEDLINE | ID: mdl-36814576

ABSTRACT

Teneurin C-terminal associated peptide (TCAP) is an ancient bioactive peptide that is highly conserved in metazoans. TCAP administration reduces cellular and behavioural stress in vertebrate and urochordate models, yet despite numerous studies in higher animals, there is limited knowledge of its role in invertebrates. In particular, there are no studies on TCAP's effects on the heart of any metazoan, which is a critical organ in the stress response. We used the Sydney rock oyster (SRO) as an invertebrate model to investigate a potential role for sroTCAP in regulating cardiac activity, including during stress. sroTCAP is localized to the neural innervation network of the SRO heart, and suggested binding with various heart proteins related to metabolism and stress, including SOD, GAPDH and metabotropic glutamate receptor. Intramuscular injection of sroTCAP (10 pmol) significantly altered the expression of heart genes that are known to regulate remodelling processes under different conditions, and modulated several gene families responsible for stress mitigation. sroTCAP (1 and 10 pmol) was shown to cause transient bradycardia (heart rate was reduced by up to 63% and for up to 40 min post-administration), indicative of an unstressed state. In summary, this study has established a role for a TCAP in the regulation of cardiac activity through modulation of physiological and molecular components associated with energy conservation, stress and adaptation. This represents a novel function for TCAP and may have implications for higher-order metazoans.


Subject(s)
Acetophenones , Peptides , Animals , Peptides/genetics
18.
Biology (Basel) ; 12(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36829446

ABSTRACT

The red seaweed Asparagopsis taxiformis is a promising ruminant feed additive with anti-methanogenic properties that could contribute to global climate change solutions. Genomics has provided a strong foundation for in-depth molecular investigations, including proteomics. Here, we investigated the proteome of A. taxiformis (Lineage 6) in both sporophyte and gametophyte stages, using soluble and insoluble extraction methods. We identified 741 unique non-redundant proteins using a genome-derived database and 2007 using a transcriptome-derived database, which included numerous proteins predicted to be of fungal origin. We further investigated the genome-derived proteins to focus on seaweed-specific proteins. Ontology analysis indicated a relatively large proportion of ion-binding proteins (i.e., iron, zinc, manganese, potassium and copper), which may play a role in seaweed heavy metal tolerance. In addition, we identified 58 stress-related proteins (e.g., heat shock and vanadium-dependent haloperoxidases) and 44 photosynthesis-related proteins (e.g., phycobilisomes, photosystem I, photosystem II and ATPase), which were in general more abundantly identified from female gametophytes. Forty proteins were predicted to be secreted, including ten rhodophyte collagen-alpha-like proteins (RCAPs), which displayed overall high gene expression levels. These findings provide a comprehensive overview of expressed proteins in A. taxiformis, highlighting the potential for targeted protein extraction and functional characterisation for future biodiscovery.

19.
J Exp Clin Cancer Res ; 42(1): 28, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36683048

ABSTRACT

BACKGROUND: Cervical cancer (CC) is the 3rd most common cancer in women and the 4th leading cause of deaths in gynaecological malignancies, yet the exact progression of CC is inconclusive, mainly due to the high complexity of the changing tumour microenvironment (TME) at different stages of tumorigenesis. Importantly, a detailed comparative single-nucleus transcriptomic analysis of tumour microenvironment (TME) of CC patients at different stages is lacking. METHODS: In this study, a total of 42,928 and 29,200 nuclei isolated from the tumour tissues of stage-I and II CC patients and subjected to single-nucleus RNA sequencing (snRNA-seq) analysis. The cell heterogeneity and functions were comparatively investigated using bioinformatic tools. In addition, label-free quantitative mass spectrometry based proteomic analysis was carried out. The proteome profiles of stage-I and II CC patients were compared, and an integrative analysis with the snRNA-seq was performed. RESULTS: Compared with the stage-I CC (CCI) patients, the immune response relevant signalling pathways were largely suppressed in various immune cells of the stage-II CC (CCII) patients, yet the signalling associated with cell and tissue development was enriched, as well as metabolism for energy production suggested by the upregulation of genes associated with mitochondria. This was consistent with the quantitative proteomic analysis that showed the dominance of proteins promoting cell growth and intercellular matrix development in the TME of CCII group. The interferon-α and γ responses appeared the most activated pathways in many cell populations of the CCI patients. Several collagens, such as COL12A1, COL5A1, COL4A1 and COL4A2, were found significantly upregulated in the CCII group, suggesting their roles in diagnosing CC progression. A novel transcript AC244205.1 was detected as the most upregulated gene in CCII patients, and its possible mechanistic role in CC may be investigated further. CONCLUSIONS: Our study provides important resources for decoding the progression of CC and set the foundation for developing novel approaches for diagnosing CC and tackling the immunosuppressive TME.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Proteomics/methods , Tumor Microenvironment/genetics , Gene Expression Profiling , Cell Transformation, Neoplastic
20.
Curr Oncol Rep ; 25(2): 115-122, 2023 02.
Article in English | MEDLINE | ID: mdl-36585961

ABSTRACT

PURPOSEOF REVIEW: The purpose of this review is to discuss the current understanding of the pegilodecakin (PEGylated interleukin 10) and its role in the inhibition of tumour growth and metastasis. This review also focuses on clinical data published to date that have evaluated the efficacy and safety of pegilodecakin. RECENT FINDINGS: Pegilodecakin has shown significant promise in preclinical models, notable for decreased tumour burden and fewer sites of metastatic disease across various malignancies. It has been most widely assessed in a phase I/Ib clinical trial against several solid tumours, leading to the phase II and III clinical trials containing pegilodecakin and its combination with other current treatments. However, the updated data have not shown higher efficacy in renal cell carcinoma, metastatic non-small cell lung cancer or pancreatic cancer, with respect to the controls, yet the adverse events presented more mixed results. Further investigation into combination therapies including pegilodecakin is ongoing. Pegilodecakin showed promise in preclinical and phase I clinical trials on its efficacy in several solid tumours, with expected regulation of IL-10 signalling pathway observed. However, the phase II and III trials did not justify its application as potential immunotherapy in selected cancers. Further evaluation of pegilodecakin's efficacy in other cancers, either as monotherapy or in combination with the current treatments, is worth investigating clinically, which warrants to better understand its potential clinical utility.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Kidney Neoplasms , Lung Neoplasms , Humans , Interleukin-10/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Immunotherapy/methods , Polyethylene Glycols/therapeutic use , Kidney Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...