Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Front Endocrinol (Lausanne) ; 13: 946504, 2022.
Article in English | MEDLINE | ID: mdl-36060967

ABSTRACT

Background: Polycystic ovary syndrome (PCOS), the most common heterogeneous reproductive disease afflicting women of childbearing age, has been recognized as a chronic inflammatory disease recently. Most PCOS patients have hyperandrogenism, indicating a poor prognosis and poor pregnancy outcomes. The molecular mechanism underlying PCOS development is still unknown. In the present study, we investigated the gene expression profiling characteristics of PCOS with hyperandrogenism (HA) or without hyperandrogenism (NHA) and identified immune-related factors that correlated with embryo implantation failure. Methods: PCOS and recurrent implantation failure (RIF) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. ClueGO software was used to perform enrichment analysis of differentially expressed genes (DEGs) in PCOS with varying androgen levels. The Weighted Co-Expression Network Analysis (WGCNA) was used to identify co-expressed modules and shared gene signatures between HA PCOS and RIF. Moreover, the upregulated DEGs of HA PCOS and RIF were intersected with shared gene signatures screening by WGCNA to excavate further key prognostic biomarkers related to implantation failure of HA PCOS. The selected biomarker was verified by qRT-PCR. Results: A total of 271 DEGs were found in HA PCOS granulosa cell samples, and 720 DEGs were found in NHA PCOS. According to CuleGO enrichment analysis, DEGs in HA PCOS are enriched in immune activation and inflammatory response. In contrast, DEGs in NHA PCOS are enriched in mesenchymal cell development and extracellular space. Using WGCNA analysis, we discovered 26 shared gene signatures between HA PCOS and RIF, which were involved in corticosteroid metabolism, bone maturation and immune regulation. DAPK2 was furtherly screened out and verified to be closely related with the development of HA PCOS, acting as an independent predictor biomarker of the embryo implantation failure. DAPK2 expression was negatively correlated to the embryo implantation rate (r=-0.474, P=0.003). The immune infiltration results suggested that upregulated DAPK2 expression was closely related with NK cell infiltration and macrophage M2, playing an essential role in the pathogenesis of implantation failure in HA PCOS. Conclusion: Our research revealed the expression profiling of PCOS with different androgen levels and identified DAPK2 as a critical prognostic biomarker for implantation failure in PCOS.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Androgens , Biomarkers , Death-Associated Protein Kinases , Female , Humans , Hyperandrogenism/complications , Hyperandrogenism/pathology , Polycystic Ovary Syndrome/complications , Prognosis
3.
J Assist Reprod Genet ; 39(1): 251-259, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34657236

ABSTRACT

PURPOSE: Multiple morphological abnormalities in the sperm flagella (MMAF) comprise a severe phenotype of asthenoteratozoospermia with reduced or absent spermatozoa motility. Whereas dozens of candidate pathogenic genes for MMAF have been identified, the genetic cause in a large proportion of patients is unknown. We attempted to identify novel genetic explanations for MMAF. METHODS: We performed whole-exome sequencing of patients with MMAF to identify pathogenic variants. The phenotypes of spermatozoa in patients carrying DNAH10 variants were investigated using haematoxylin and eosin staining, scanning electron microscopy, and transmission electron microscopy. The expression and location of DNAH10 and other spermatozoa structure-related proteins were analyzed using immunofluorescence assays. RESULTS: We found one homozygous frameshift DNAH10 variant (NM_207437: c.2514delG:p.L839*) and one compound heterozygous DNAH10 variant (NM_207437: c.10820 T > C:p.M3607T; c.12692C > T:p.T4231I) in two patients with MMAF. These variants were absent or rare in the general population. Haematoxylin and eosin staining and scanning electron microscopy revealed the significant disruption of sperm flagella in the patients. In addition, ultrastructural analysis by transmission electron microscopy showed significant inner dynein arm (IDA) deficiency in sperm flagella. Using immunofluorescence assays, we found a significant reduction in IDA-related proteins including DNAH10 and DNAH1. CONCLUSIONS: We identified putative novel pathogenic variants in DNAH10 for MMAF, which might advance the genetic diagnosis and clinical genetic counselling for male infertility.


Subject(s)
Asthenozoospermia/etiology , Dyneins/genetics , Adult , Asthenozoospermia/genetics , Dyneins/adverse effects , Dyneins/metabolism , Genetic Variation/genetics , Humans , Infertility, Male/etiology , Infertility, Male/genetics , Male , Spermatozoa/pathology , Exome Sequencing/methods
4.
Front Genet ; 12: 666136, 2021.
Article in English | MEDLINE | ID: mdl-34178031

ABSTRACT

Preimplantation embryonic lethality is a rare cause of primary female infertility. It has been reported that variants in the transducin-like enhancer of split 6 (TLE6) gene can lead to preimplantation embryonic lethality. However, the incidence of TLE6 variants in patients with preimplantation embryonic lethality is not fully understood. In this study, we identified four patients carrying novel biallelic TLE6 variants in a cohort of 28 patients with preimplantation embryonic lethality by whole-exome sequencing and bioinformatics analysis, accounting for 14.29% (4/28) of the cohort. Immunofluorescence showed that the TLE6 levels in oocytes from patients were much lower than in normal control oocytes, suggesting that the variants result in the lower expression of the TLE6 protein in oocytes. In addition, a retrospective analysis showed that the four patients underwent a total of nine failures of in vitro fertilization and intracytoplasmic sperm injection attempts, and one of them became pregnant on the first attempt using donated oocytes. Our study extends the genetic spectrum of female infertility caused by variants in TLE6 and further confirms previously reported findings that TLE6 plays an essential role in early embryonic development. In such case, oocyte donation may be the preferred treatment.

5.
J Cell Physiol ; 236(10): 7223-7241, 2021 10.
Article in English | MEDLINE | ID: mdl-33876837

ABSTRACT

Circular RNAs (circRNAs) are endogenous noncoding RNAs with unique cyclic structures. Although they were previously considered as nonfunctional transcription byproducts, numerous studies have demonstrated that circRNAs regulate gene transcription and expression via different mechanisms. Reproductive health influences the quality of life and affects offspring propagation in women. CircRNAs have been found to modify pregnancy-related diseases, gynecologic cancers, polycystic ovary syndrome, aging, gamete, and embryo development. It's promising for circRNAs to be the novel diagnostic and therapeutic targets for multiple reproductive diseases. With the widespread application of assisted reproduction technology (ART), it has been revealed that circRNA identification contributes to estimating the quality of gametes and embryos, reflecting the success rate of ART. CRISPR-Cas9 gene editing technology has enabled the discovery of new roles of circRNAs. So far, the roles of circRNAs in the reproductive system remain poorly defined. In this review, we describe the classification and functions of circRNAs in embryogenesis and the female reproductive system diseases, revealing potential roles of circRNAs physiologically and pathologically. In so-doing, we provide ideas for developing circRNA-based therapeutic treatment and clinical application of various female reproductive system diseases.


Subject(s)
Embryonic Development , Fertility , Infertility, Female/metabolism , Pregnancy Complications/metabolism , RNA, Circular/metabolism , Animals , Embryonic Development/genetics , Female , Fertility/genetics , Gene Expression Regulation, Developmental , Humans , Infertility, Female/genetics , Infertility, Female/physiopathology , Infertility, Female/therapy , Pregnancy , Pregnancy Complications/genetics , Pregnancy Complications/physiopathology , Pregnancy Complications/therapy , RNA, Circular/genetics , Reproductive Health , Reproductive Techniques, Assisted
6.
Arch Gynecol Obstet ; 301(6): 1455-1461, 2020 06.
Article in English | MEDLINE | ID: mdl-32306055

ABSTRACT

PURPOSE: Abnormalities during Müllerian duct and female reproductive tract formation during embryonic development result in Müllerian duct anomalies (MDA). Previous studies have identified a role for mutations in related genes and DNA copy number variation (CNV). However, the correlation between gene methylation and MDA remains to be understood. METHODS: Endometrial tissues were collected from patients with septate (n = 23) or normal uterus (n = 28). We detected the methylation status of CpG sites and mRNA levels of nine candidate genes, including HOXA10, EMX2, TP63, ITGB3, PAX2, LHX1, GSC, WNT4, and H19, using MethyTarget and quantitative real-time polynucleotide chain reaction (qRT-PCR), respectively RESULTS: Compared with healthy controls, we detected three hypomethylated CpG sites (P < 0.05) and increased mRNA levels of PAX2 (P < 0.05) in individuals with MDA. HOXA10, EMX2, TP63, ITGB3, LHX1, and GSC had 1, 1, 2, 1, 5, and 2 differentially methylated CpG sites (P < 0.05), respectively, but there were no significant differences in their mRNA levels (P > 0.05). WNT4 and H19 did not show differences in methylation (P > 0.05) and mRNA levels (P > 0.05). CONCLUSIONS: Aberrant DNA methylation within the promoter of PAX2 may contribute to the development of MDA by regulating its gene expression. However, the methylation status of HOXA10, EMX2, TP63, ITGB3, LHX1, GSC, WNT4, and H19, may not contribute to the development of MDA.


Subject(s)
DNA Methylation/genetics , Mullerian Ducts/abnormalities , PAX2 Transcription Factor/genetics , Adult , Female , Humans
7.
Life Sci ; 235: 116810, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31472147

ABSTRACT

AIMS: Previous reports have demonstrated that melatonin exists in multiple extrapineal sites, and higher amounts of melatonin are present in human follicular fluid than in serum, which indicates that it might play key roles in human oocyte maturation and subsequent embryonic development. Melatonin has been shown to be a potent antioxidant and might be beneficial to human oocytes during in vitro maturation (IVM). However, the underlying mechanisms of melatonin action during IVM have not been thoroughly investigated. MAIN METHODS: Immunofluorescence staining, western blotting, and ELISA were applied to investigate whether melatoninergic components are expressed in the cultured human ovarian cumulus cells. TMRE staining and Fluo-4 AM staining were performed to detect the mitochondrial membrane potential and intracellular Ca2+ levels of immature human oocytes respectively. KEY FINDINGS: First, cultured human ovary cumulus cells synthesized melatonin in vitro, and it expressed serotonin (the precursor of melatonin) and the two key enzymes, i.e. N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT). Additionally, the results suggest that melatonin maintains the mitochondrial membrane potential and decrease excessive Ca2+ levels in immature human oocytes during IVM. SIGNIFICANCE: In conclusion, we provide evidence that the melatoninergic components were expressed in cultured human ovarian cumulus cells, and melatonin might reduce oxidative stress of human oocytes by ameliorating mitochondrial function. In view of the significant clinical value that immature human oocytes have in assisted reproductive technology (ART), our findings highlight a potential treatment strategy of using melatonin to improve mitochondrial function and to enhance the quality of human oocytes during IVM.


Subject(s)
Antioxidants/pharmacology , Calcium/metabolism , Melatonin/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Oocytes/drug effects , Antioxidants/analysis , Female , Humans , In Vitro Oocyte Maturation Techniques , Melatonin/analysis , Mitochondria/metabolism , Oocytes/cytology , Oocytes/metabolism , Oxidative Stress
8.
Gene ; 683: 87-100, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30300681

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine and metabolic heterogeneous disorder. The incidence of which reaches 5% to 10% among reproductive-age women. Abnormal folliculogenesis is considered to be a common characteristic of PCOS, but the cause of this disorder and its pathogenesis still remain uncertain. Previous studies had proved that dysregulation of microRNAs is related to the pathogenesis of PCOS. In this study, we investigated the effect of miR-323-3p on the human cumulus cells (CCs). We also investigated the underlying mechanisms of miR-323-3p on human granulosa-like tumor cell line (KGN) or primary human CCs by stimulating with Dihydrotestosterone (DHT). Our findings suggested that the level of miR-323-3p in human CCs of women with PCOS was down-regulated, compared with that of the control group. Moreover, the inhibition of the level of miR-323-3p could up-regulate of the steroidogenesis and promote the apoptosis in KGN cells. In addition, our data confirmed that the Insulin-like growth factor 1 (IGF-1) gene was the direct target of miR-323-3p. Furthermore, the mimic of miR-323-3p inhibited the expression of IGF-1, which down-regulated the levels of AR, AMHR-II, CYP19A, EGFR, and GATA-4. In conclusion, miR-323-3p targeting IGF-1 regulates the steroidogenesis and the activity of CCs, which plays an important role in the occurrence and development of PCOS. Our results have shown that miR-323-3p is a novel and promising molecular target for the improvement of the dysfunction of CCs in PCOS.


Subject(s)
Cumulus Cells/cytology , Insulin-Like Growth Factor I/genetics , MicroRNAs/genetics , Polycystic Ovary Syndrome/genetics , Steroids/metabolism , Adult , Apoptosis , Cell Cycle , Cell Line , Down-Regulation , Female , Humans
9.
Cryobiology ; 74: 43-49, 2017 02.
Article in English | MEDLINE | ID: mdl-27956222

ABSTRACT

Sucrose and trehalose are conventional cryoprotectant additives for oocytes and embryos. Ethanol can artificially enhance activation of inseminated mature oocytes. This study aims to investigate whether artificial oocyte activation (AOA) with ethanol can promote the development competence of in vitro matured oocytes. A total of 810 human immature oocytes, obtained from 325 patients undergoing normal stimulated oocyte retrieval cycles, were in vitro maturated (IVM) either immediately after collection (Fresh group n = 291)) or after being vitrified as immature oocytes (Vitrified group n = 519). These groups were arbitrarily assigned. All fresh and vitrified oocytes which matured after a period of IVM then underwent intra-cytoplasmic sperm injection (ICSI). Half an hour following ICSI, they were either activated by 7% ethanol (AOA group) or left untreated (Non-AOA group). Fertilization, cleavage rate, blastocyst quality and aneuploidy rate were then evaluated. High-quality blastocysts were only obtained in both the fresh and vitrified groups which had undergone AOA after ICSI. Trehalose vitrification slightly, but not significantly, increased the formation rates of high-quality embryos (21.7% VS 15.4%, P > 0.05) and blastocysts (15.7% VS 7.69%, P > 0.05)) when compared with sucrose vitrification. Aneuploidy was observed in 12 of 24 (50%) of the AOA derived high quality blastocysts. High-quality blastocysts only developed from fresh or vitrified immature oocytes if the ICSI was followed by AOA. This information may be important for human immature oocytes commonly retrieved in normal stimulation cycles and may be particularly important for certain patient groups, such as cancer patients. AOA with an appropriate concentration of ethanol can enhance the developmental competence of embryos.


Subject(s)
Cryopreservation/methods , Cryoprotective Agents/pharmacology , Ethanol/pharmacology , Oocytes/growth & development , Sucrose/pharmacology , Trehalose/pharmacology , Vitrification , Aneuploidy , Blastocyst/physiology , Female , Fertilization , Fertilization in Vitro , Humans , In Vitro Oocyte Maturation Techniques , Oogenesis/physiology , Sperm Injections, Intracytoplasmic
SELECTION OF CITATIONS
SEARCH DETAIL
...