Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 912: 169546, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38142010

ABSTRACT

Understanding the causes and sources responsible for severe fine particulate matter (PM2.5) pollution episodes that occur under conducive synoptic weather patterns (SWPs) is essential for regional air quality management. The Yangtze River Delta (YRD) region in eastern China has experienced recurrent severe PM2.5 episodes during the winters from 2013 to 2017. In this study, we employed an objective classification approach, the self-organizing map, to investigate the underlying impact of predominant SWPs on PM2.5 pollution in the YRD. We further conducted a series of source apportionment simulations using the Particulate Source Apportionment Technology (PSAT) tool integrated within the Comprehensive Air Quality Model with Extensions (CAMx) to quantify the source contributions to PM2.5 pollution under different SWPs. Here we identified six predominant SWPs over the YRD that are robustly connected to the evolution of the Siberian High. Considering the regional average PM2.5 anomalies, our results show that polluted SWPs favourable for the occurrence of regional PM2.5 pollution account for 61-78 %. The most conducive SWP, associated with the highest regional exceedance (46 %) of PM2.5 levels, is characterized by noticeable cyclonic anomalies at 850 hPa and stagnant surface weather conditions. Our source apportionment analysis emphasizes the pivotal role of local emissions and intra-regional transport within the YRD in shaping PM2.5 pollution in representative cities. Local emissions have the most significant impact on PM2.5 levels in Shanghai (32-48 %), while PM2.5 pollution in Nanjing, Hangzhou, and Hefei is more influenced by intra-regional transport (33-61 %). Industrial and residential emissions are the dominant sources, contributing 32-41 % and 24-38 % to PM2.5, respectively. Under specific SWPs associated with a stronger influence of inter-regional transport from northern China, there is a synchronously remarkable enhancement in the contribution of residential emissions. Our study pinpoints the opportunities for future air quality planning that would benefit from quantitative source attribution linked to prevailing SWPs.

2.
Environ Pollut ; 343: 123234, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38154777

ABSTRACT

Elevated ozone (O3) has emerged as the major air quality concern since China's clean air actions, offsetting the health benefits gained from improved air quality. Given the shifted ozone chemical regimes and recently boosted extreme weather in China, it's essential to rethink the O3 trends since 2013 for evaluations of air pollution mitigation policy. Here, we examine the anthropogenically and meteorologically modulated summertime O3 trends across China at different stages of the clean air actions using multi-source observations combined with multi-model calculations. Ozone increases steadily in China between 2013-2022, with a fast increase rate of 4.4 µg m-3 yr-1 in Phase I and a much smaller 0.6 µg m-3 yr-1 in Phase II of Action Plan. Results highlight that the deteriorative O3 pollution in Phase I and early Phase II is dominated by the nonlinear O3-emission response. Persistent decline in O3 precursors has shifted its chemical regime in urban areas and began to show a positive influence on ozone mitigation in recent years. Meteorological influence on O3 variations is minor until 2019 (∼10%), but it greatly accelerates or relieves the O3 pollution after then, showing comparable contribution to emissions. Epidemiological model predicts totally 0.8-3.0 thousand yr-1 more deaths across China with altered anthropogenic emissions since clean air actions, and additional health burdens by -1.5-0.3 thousand yr-1 from perturbated meteorology. This study calls for stringent emission control and climate adaptation strategies to attain the ozone pollution mitigation in China.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Ozone/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/analysis , China
3.
Huan Jing Ke Xue ; 44(12): 6598-6609, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098387

ABSTRACT

In recent years, the management of atmospheric fine particulate matter(PM2.5) pollution in China has achieved staged success, but ozone(O3) pollution has increased rapidly. Detection and source localization of atmospheric pollutants is the basis and key to controlling the combined pollution of PM2.5 and O3. With the rapid development of UAV technology and sensor technology, air pollution detection based on UAV platforms can effectively obtain the structural characteristics of PM2.5 and O3 near the surface and accurately trace the source of air pollution events by applying the computer algorithms, with the characteristics of high timeliness, flexibility, and spatial and temporal resolution. This will help researchers understand the distribution, changes, and sources of regional pollutants and provide a scientific basis for the synergistic control of combined air pollution. This study reviewed the traditional air pollution detection methods, summarized the types of UAV platforms and detection instruments commonly used in pollution detection, concluded the applications of UAV-based PM2.5 and O3 pollution detection and the algorithms of pollution source localization, and discussed the future trends of UAV-based air pollution detection.

4.
Huan Jing Ke Xue ; 44(11): 5933-5945, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973078

ABSTRACT

To understand the changes in the components of volatile organic compounds(VOCs), the contribution proportion of each component to ozone, and the VOCs sources, we monitored the VOCs for a year in Lishui. The results showed that theρ(TVOC) was 223.46 µg·m-3, ρ(alkanes) was 49.45 µg·m-3(22.3%), ρ(OVOCs) was 50.63 µg·m-3(22.66%), ρ(halogenated hydrocarbons) was 64.73 µg·m-3(28.95%), ρ(aromatic hydrocarbons) was 35.46 µg·m-3(15.87%), ρ(alkenes) was 18.26 µg·m-3(8.19%), and ρ(others) was 4.9 µg·m-3(2.2%). ρ(TVOC) was higher in summer(263.75 µg·m-3) and lower in winter(187.2 µg·m-3), with 246.11 µg·m-3 in spring and 204.77 µg·m-3 in autumn. The daily concentration of VOCs showed two peaks, one from 9:00 to 10:00 and another from 14:00 to 15:00, and the high concentration was mainly found in the urban main road area with dense human activities. The ozone formation potential(OFP) was 278.92 µg·m-3, and those of olefin and aromatic hydrocarbon were 114.47 µg·m-3(41.1%) and 113.49 µg·m-3(40.8%), respectively, contributing over 80%, which was an important precursor of ozone. On the other hand, the ratio of characteristic compounds to toluene/benzene(T/B) was 4.13, which indicated that it was greatly affected by the solvent usage. In the end, the results of positive matrix factorization(PMF) source apportionment showed that VOCs mainly came from solvent usage, industrial production, and traffic emissions. The VOCs pollution had a great influence on ozone, so it was necessary to strengthen the treatment of industrial production, solvent usages, and traffic emissions.

5.
Sci Total Environ ; 894: 165060, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37353029

ABSTRACT

Formaldehyde (HCHO) is an air pollutant that has a detrimental effect on human health and atmospheric environment. Until now, satellite observation has been increasingly a valuable source for monitoring the unconventional atmospheric pollutants due to the limited availability of ground-based HCHO data. Here, we used Ozone Monitoring Instrument (OMI) and the weather research and forecasting with chemistry (WRF-Chem) model to synergistically analyze the spatiotemporal variations of tropospheric HCHO in Beijing during 2009-2020, and the response of O3 to HCHO and NO2 in hotspots. We also discuss the multiple factors influencing the variation of HCHO and identify potential source area. The results indicated that HCHO column concentration is higher in eastern Beijing, and peaking in 2018 (16.68 × 1015 mol/cm2). O3 shows a good response to HCHO, with higher HCHO and NO2 photolysis leading to O3 increase in summer. In winter, decreasing HCHO and increasing NO2 inhibits the formation of O3. Transportation emissions contributed the most to HCHO, followed by the industrial sector, while residential sources have long-term effects. Isoprene produced by plants is one of the main sources of HCHO, whereas meteorological conditions can affect production efficiency. Biomass burning contributes less. Moreover, HCHO in Beijing is affected by the combined effects of local emission and external transport, and Hebei is the potential source area. This study reveals HCHO has a great accumulation potential in cities and highlights the dominant role of anthropogenic emissions, but also need to consider the influence of natural factors and regional transport.

6.
Adv Atmos Sci ; : 1-23, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37359906

ABSTRACT

Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.

7.
Sci Total Environ ; 873: 162434, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36841413

ABSTRACT

The rapid development of Chinese cities is accompanied by air pollution. Although the implementation of air pollution control strategies in recent years has alleviated PM2.5 pollution, O3 pollution and the synergistic pollution of PM2.5 and O3 have become more serious. To understand the underlying chemical interaction mechanisms between PM2.5 and O3, we applied the modified Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the effects of aerosol-photolysis feedback and heterogeneous reactions on the two pollutants and revealed the contribution of different mechanisms in different seasons and regions in Yangtze River Delta (YRD) in eastern China. We found that, through the aerosol-photolysis feedback, PM2.5 decreased the surface photolysis rates JNO2 and JO1D, resulting in a decrease in O3 concentration in the VOC-sensitive area and a slight increase in the NOx-sensitive area. The heterogeneous reactions reduced O3 concentration in the YRD in spring, autumn and winter by consuming HxOy. While in summer, the heterogeneous absorption of NOx decreased O3 in the NOx-sensitive areas and increased O3 in the VOC-sensitive areas. Heterogeneous reactions also promoted the secondary formation of fine sulfate and nitrate aerosols, especially in winter. Through the combined effect of two chemical processes, PM2.5 can lead to a decrease in O3 concentration of -3.3 ppb (-7.6 %), -2.2 ppb (-4.0 %), -2.9 ppb (-6.3 %), and - 5.9 ppb (-18.7 %), in spring, summer, autumn and winter in YRD. Therefore, if the PM2.5 concentration decreases, the weakening effect of PM2.5 on the ozone concentration will be reduced, resulting in the aggravation of ozone pollution. This study is important for understanding the synergistic pollution mechanism and provides a scientific basis for the coordinated control of urban air pollution.

8.
Environ Int ; 171: 107740, 2023 01.
Article in English | MEDLINE | ID: mdl-36634483

ABSTRACT

Ambient fine particulate matter (PM2.5) pollution is a major environmental and public health challenge in China. In the recent decade, the PM2.5 level has decreased mainly driven by reductions in particulate sulfate as a result of large-scale desulfurization efforts in coal-fired power plants and industrial facilities. Emerging evidence also points to the differential toxicity of particulate sulfate affecting human health. However, estimating the long-term spatiotemporal trend of sulfate is difficult because a ground monitoring network of PM2.5 constituents has not been established in China. Spaceborne sensors such as the Multi-angle Imaging SpectroRadiometer (MISR) instrument can provide complementary information on aerosol size and type. With the help of state-of-the-art machine learning techniques, we developed a sulfate prediction model under support from available ground measurements, MISR-retrieved aerosol microphysical properties, and atmospheric reanalysis data at a spatial resolution of 0.1°. Our sulfate model performed well with an out-of-bag cross-validationR2 of 0.68 at the daily level and 0.93 at the monthly level. We found that the national mean population-weighted sulfate concentration was relatively stable before the Air Pollution Prevention and Control Action Plan was enforced in 2013, ranging from 10.4 to 11.5 µg m-3. But the sulfate level dramatically decreased to 7.7 µg m-3 in 2018, with a change rate of -28.7 % from 2013 to 2018. Correspondingly, the annual mean total non-accidental and cardiopulmonary deaths attributed to sulfate decreased by 40.7 % and 42.3 %, respectively. The long-term, full-coverage sulfate level estimates will support future studies on evaluating air quality policies and understanding the adverse health effect of particulate sulfate.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Air Pollution/analysis , Dust/analysis , China , Aerosols/adverse effects , Aerosols/analysis
9.
Environ Pollut ; 317: 120715, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36436657

ABSTRACT

Carbon neutrality objectives affect meteorology and ozone (O3) concentration in China, both of which would influence crop yields, thus food security. However, the joint impact of these two factors on crop yields in China is not clear. In this study, we investigated future trends in China's maize, rice, soybean, and wheat yields under a carbon-neutral scenario considering both regional emission reduction and global climate change in 2060. By combining a process-based crop model (Agricultural Production Systems sIMulator, APSIM) with O3 exposure equations, the impacts of regional emission reduction and global climate change were studied. The results suggest that regional emission reduction dominated the increase in yield by reducing the O3 concentration, whereas global climate change led to yield loss mainly through meteorological factors. The national yield decreases for the four crops ranged from 1.0% to 38.0% owing to meteorological factors, while O3 reduction resulted in additional yield increases ranging from 2.8% to 7.0%. The combined effect of carbon neutrality, which included both meteorological factors and O3 concentration, resulted in changes to the yields of maize, rice, soybean, and wheat of +4.3%, -7.3%, -24.0%, and -31.7%, respectively. It seems that crop production loss caused by meteorological factors in 2060 would be mitigated by the O3 reduction. Given the advantages of declining O3 concentration, regional emission reduction would likely benefit crop growth. However, global climate change may offset the benefits and threaten food production in China. Therefore, more strict emission reduction policies and global climate change mitigation actions are necessary to ensure food security in China.


Subject(s)
Oryza , Ozone , Crops, Agricultural , Agriculture , Meteorological Concepts , China , Climate Change , Triticum , Zea mays
10.
Res Sq ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38168284

ABSTRACT

Ambient PM2.5 pollution is recognized as a leading environmental risk factor, causing significant mortality and morbidity in China. However, the specific contributions of individual PM2.5 constituents remain unclear, primarily due to the lack of a comprehensive ground monitoring network for constituents. This issue is particularly critical for carbonaceous species such as organic carbon (OC) and elemental carbon (EC), which are known for their significant health impacts, and understanding the OC/EC ratio is crucial for identifying pollution sources. To address this, we developed a Super Learner model integrating Multi-angle Imaging SpectroRadiometer (MISR) retrievals to predict daily OC concentrations across China from 2003 to 2019 at a 10-km spatial resolution. Our model demonstrates robust predictive accuracy, as evidenced by a random cross-validation R2 of 0.84 and an RMSE of 4.9 µg/m3, at the daily level. Although MISR is a polar-orbiting instrument, its fractional aerosol data make a significant contribution to the OC exposure model. We then use the model to explore the spatiotemporal distributions of OC and further calculate the EC/OC ratio in China. We compared regional pollution discrepancies and source contributions of carbonaceous pollution over three selected regions: Beijing-Tianjin-Hebei, Fenwei Plain, and Yunnan Province. Our model observes that OC levels are elevated in Northern China due to industrial operations and central heating during the heating season, while in Yunnan, OC pollution is mainly contributed by local forest fires during fire seasons. Additionally, we found that OC pollution in China is likely influenced by climate phenomena such as the El Niño-Southern Oscillation. Considering that climate change is increasing the severity of OC concentrations with more frequent fire events, and its influence on OC formation and dispersion, we suggest emphasizing the role of climate change in future OC pollution control policies. We believe this study will contribute to future epidemiological studies on OC, aiding in refining public health guidelines and enhancing air quality management in China.

11.
iScience ; 25(9): 104899, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36039292

ABSTRACT

Air pollution is a major environmental and public health challenge in China and the Chinese government has implemented a series of strict air quality policies. However, particulate nitrate (NO3 -) concentration remains high or even increases at monitoring sites despite the total PM2.5 concentration has decreased. Unfortunately, it has been difficult to estimate NO3 - concentration across China due to the lack of a PM2.5 speciation monitoring network. Here, we use a machine learning model incorporating ground measurements and satellite data to characterize the spatiotemporal patterns of NO3 -, thereby understanding the disease burden associated with long-term NO3 - exposure in China. Our results show that existing air pollution control policies are effective, but increased NO3 - of traffic emissions offset reduced NO3 - of industrial emissions. In 2018, the national mean mortality burden attributable to NO3 - was as high as 0.68 million, indicating that targeted regulations are needed to control NO3 - pollution in China.

12.
Sci Total Environ ; 829: 154672, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35314236

ABSTRACT

A recent case study indicated that the weakening of the East Asian subtropical jet was an important cause of the severe haze in North China in the winter of 2015. However, the interannual relationship between two key features, the displacement and the intensity of the East Asian jet stream (EAJS) and the haze days over eastern China (HDEC), remains unclear. Observed data, ERA-Interim reanalysis, and Community Earth System Model Large Ensemble Numerical Simulation(CESM-LENS) were used to investigate the interannual relationship between the EAJS and HDEC during the winter season from 1980 to 2017 and its possible associated atmospheric mechanisms. The results show that the northward movement of the EAJS is conducive to more HDEC by weakening synoptic-scale transient eddy activities (STEA) and baroclinicity, forming an upper-level anticyclonic anomaly over eastern China (EC). The local meteorological conditions (e.g., stronger temperature inversion potential, higher relative humidity, descending motion) are favorable for the accumulation of HDEC, showing consistent variations in more haze in the entire region of EC. The southward movement of the EAJS has the opposite effect. The strong East Asian subtropical jet (weak polar-front jet) could result in the distribution of the meridional dipole with less haze in north EC and more haze in south EC. The mean flow loses energy to the STEA over north EC and increases the baroclinicity, which is favorable for dispersing HDEC. However, the configuration of upper-level cyclonic and low-level southwest wind anomalies that appeared in south EC weakened the STEA, which favored the accumulation of HDEC. The observed results were further verified by CESM-LENS.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , China , Environmental Monitoring , Particulate Matter/analysis , Seasons , Wind
13.
Atmos Environ (1994) ; 251: 118276, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33642917

ABSTRACT

To prevent the spread of COVID-19 (2019 novel coronavirus), from January 23 to April 8 in 2020, the highest Class 1 Response was ordered in Wuhan, requiring all residents to stay at home unless absolutely necessary. This action was implemented to cut down all unnecessary human activities, including industry, agriculture and transportation. Reducing these activities to a very low level during these hard times meant that some unprecedented naturally occurring measures of controlling emissions were executed. Ironically, however, after these measures were implemented, ozone levels increased by 43.9%. Also worthy of note, PM2.5 decreased 31.7%, which was found by comparing the observation data in Wuhan during the epidemic from 8th Feb. to 8th Apr. in 2020 with the same periods in 2019. Utilizing CMAQ (The Community Multiscale Air Quality modeling system), this article investigated the reason for these phenomena based on four sets of numerical simulations with different schemes of emission reduction. Comparing the four sets of simulations with observation, it was deduced that the emissions should decrease to approximately 20% from the typical industrial output, and 10% from agriculture and transportation sources, attributed to the COVID-19 lockdown in Wuhan. More importantly, through the CMAQ process analysis, this study quantitatively analyzed differences of the physical and chemical processes that were affected by the COVID-19 lockdown. It then examined the differences of the COVID-19 lockdown impact and determined the physical and chemical processes between when the pollution increased and decreased, determining the most affected period of the day. As a result, this paper found that (1) PM2.5 decreased mainly due to the reduction of emission and the contrary contribution of aerosol processes. The North-East wind was also in favor of the decreasing of PM2.5. (2) O3 increased mainly due to the slowing down of chemical consumption processes, which made the concentration change of O3 pollution higher at about 4 p.m.-7 p.m. of the day, while increasing the concentration of O3 at night during the COVID-19 lockdown in Wuhan. The higher O3 concentration in the North-East of the main urban area also contributed to the increasing of O3 with unfavorable wind direction.

14.
Atmos Res ; 249: 105328, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33100451

ABSTRACT

With outbreak of the novel coronavirus disease (COVID-19), immediate prevention and control actions were imposed in China. Here, we conducted a timely investigation on the changes of air quality, associated health burden and economic loss during the COVID-19 pandemic (January 1 to May 2, 2020). We found an overall improvement of air quality by analyzing data from 31 provincial cities, due to varying degrees of NO2, PM2.5, PM10 and CO reductions outweighing the significant O3 increase. Such improvement corresponds to a total avoided premature mortality of 9410 (7273-11,144) in the 31 cities by comparing the health burdens between 2019 and 2020. NO2 reduction was the largest contributor (55%) to this health benefit, far exceeding PM2.5 (10.9%) and PM10 (23.9%). O3 instead was the only negative factor among six pollutants. The period with the largest daily avoided deaths was rather not the period with strict lockdown but that during February 25 to March 31, due to largest reduction of NO2 and smallest increase of O3. Southwest, Central and East China were regions with relatively high daily avoided deaths, while for some cities in Northeast China, the air pollution was even worse, therefore could cause more deaths than 2019. Correspondingly, the avoided health economic loss attributable to air quality improvement was 19.4 (15.0-23.0) billion. Its distribution was generally similar to results of health burden, except that due to regional differences in willingness to pay to reduce risks of premature deaths, East China became the region with largest daily avoided economic loss. Our results here quantitatively assess the effects of short-term control measures on changes of air quality as well as its associated health and economic burden, and such information is beneficial to future air pollution control.

15.
Atmos Environ (1994) ; 246: 118103, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33250658

ABSTRACT

China's lockdown to control COVID-19 brought significant declines in air pollutant emissions, but haze was still a serious problem in North China Plain (NCP) during late-January to mid-February of 2020. We seek the potential causes for the poor air quality in NCP combining satellite data, ground measurements and model analyses. Efforts to constrain COVID-19 result in a drop-off of primary gaseous pollutants, e.g., -42.4% for surface nitrogen dioxide (NO2) and -38.9% for tropospheric NO2 column, but fine particulate matter (PM25) still remains high and ozone (O3) even increases sharply (+84.1%). Stagnant weather during COVID-19 outbreak, e.g., persistent low wind speed, frequent temperature inversion and wind convergence, is one of the major drivers for the poor air quality in NCP. The surface PM2.5 levels vary between -12.9~+15.1% in NCP driven by the varying climate conditions between the years 2000 and 2020. Besides, the persistent PM2.5 pollution might be maintained by the still intensive industrial and residential emissions (primary PM2.5), and increased atmospheric oxidants (+26.1% for ozone and +29.4% for hydroxyl radical) in response to the NO2 decline (secondary PM2.5). Further understanding the nonlinear response between atmospheric secondary aerosols and NOx emissions is meaningful to cope with the emerging air pollution problems in China.

16.
Huan Jing Ke Xue ; 41(9): 3941-3950, 2020 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-33124273

ABSTRACT

Volatile organic compounds (VOCs) are important precursors of ozone and particulate matter; thus, their impacts on air quality are particularly significant. To study the composition characteristics and sources of VOCs in Lianyungang City, four national control sites were selected to conduct VOCs sampling and analysis on typical days in spring, summer, and autumn. Concentrations of VOCs, the effects of different components of VOCs on ozone formation were quantified, and the sources of VOCs were analyzed using the Positive Matrix Factorization model. The VOC concentrations were in the range of 27.46×10-9-40.52×10-9 in spring, 45.79×10-9-53.45×10-9 in summer, and 38.84×10-9-46.66×10-9 in autumn. Concentrations of oxygenated compounds accounted for 41%-48% of all measured VOCs. VOC species with higher concentrations were acetone, acrolein, and propionaldehyde, and the concentration of isoprene was higher in summer. Generally, VOC concentrations were higher at 09:00 than at 13:00 when acrolein, ethylene, and dichloromethane concentrations changed greatly. The ozone formation potential (OFP) of oxygenated compounds was the highest, followed by aromatics and alkenes, and the OFP of alkanes was the smallest. The VOC species with higher OFP were acrolein, propylene, and ethylene. The main sources of VOCs in Lianyungang were industry (49%), solvent usage (23%), transportation (14%), paint usage (10%), and natural sources (4%). The results suggest further investigating the oxygenated compounds with higher concentrations and higher OFP in Lianyungang City, and studying the impacts of industrial sources on VOCs.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Cities , Environmental Monitoring , Ozone/analysis , Volatile Organic Compounds/analysis
17.
Ecotoxicol Environ Saf ; 196: 110541, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32247960

ABSTRACT

Urban emissions are a major contributor to atmospheric Hg budgets. Continuous measurements of total gaseous mercury (TGM) and particulate-bound mercury (PHg) in PM2.5 were conducted from October 2015 to July 2016 in a metropolis, Jinan, in eastern China. Average TGM and PHg concentrations were 4.91 ± 3.66 ng m-3 and 451.9 ± 433.4 pg m-3, respectively, in the entire study period. During the winter heating period (HP), mean concentrations of TGM and PHg were 5.79 ng m-3 and 598.7 pg m-3, respectively, twice higher than those during the non-heating periods (NHPs). During the HP, TGM exhibited a distinct diurnal pattern with a peak in the morning and a minimum in the afternoon on less polluted days but a singular peak at midday on heavily polluted days. The diurnal variation of TGM during the NHPs was predominantly influenced by the variation in boundary layer height while during the HP by anthropogenic emissions. The ratio of PHg/PM2.5 in Jinan was one to two orders of magnitude larger than those elsewhere worldwide and those in soil and coal, which suggested the high enrichment of PHg in PM2.5 in Jinan. Correlation and principle component analysis results suggested that PHg and TGM had common combustion sources during the HP, whereas PHg resulted mainly from biomass burning and meteorological variations during the NHPs. High Hg concentrations in Jinan were mostly caused by emissions from coal-fired power plants, especially for those situated east of the sampling site. In addition, TGM and PHg concentrations significantly increased during haze and fog episodes, but decreased during a dust episode due possibly to strong ventilation conditions combined with partitioning of Hg between adsorption to PM2.5 and coarse dust particles.


Subject(s)
Air Pollutants/analysis , Mercury/analysis , China , Cities , Coal , Dust , Environmental Monitoring , Particulate Matter/analysis , Power Plants , Seasons
18.
Sci Total Environ ; 716: 137010, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32044484

ABSTRACT

The accelerating urbanization has led to serious air pollution dominated by PM2.5, posing a critical challenge for the environmental sustainability of the Belt and Road Initiative (BRI). However, a focus on the distribution and drivers of PM2.5 concentrations in BRI is lacking. To fill in the gap, this study explores the spatio-temporal distribution of PM2.5 concentrations in 74 nations partnering the BRI and identifies the socioeconomic and natural drivers behind the variation through the joint use of spatial autocorrelation and regression analyses. We find that the PM2.5 concentrations of BRI show significant spatial autocorrelation and spatial heterogeneity on the national scale. The most heavily polluted regions are observed mainly in China, Southeast Asia, South Asia, West Asia and North Africa, particularly in the Arabian Gulf region. Energy intensity and per capita electricity consumption act as the major drivers of the PM2.5 concentrations, whereas the expanding forest area contributes to the decrease in PM2.5 concentrations notably. Our findings highlight the need for speeding up new-type urbanization as part of the green BRI practice, calling for international cooperation and coordinated action aimed at enhancing synergies of air-quality and climate policies that at present are mostly launched and implemented in isolation. From a broader point of view, in struggling towards BRI's cleaner air, more attention should be paid to creating policy synergies between the green BRI, the Paris Agreement, and the United Nations 2030 Agenda for Sustainable Development.

19.
Environ Pollut ; 257: 113631, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31784271

ABSTRACT

Severe ozone (O3) pollution in China has magnified global concerns over the past years. Exploring the synoptic impacts and quantifying the source contributions are important for mitigating O3 pollution. This study focuses on the summertime O3 pollution over the Yangtze River Delta (YRD) in eastern China. We identify six predominant synoptic weather patterns (SWPs) over the YRD during 2013-2017 using the self-organising map (SOM) approach. We conduct O3 source attribution based on ozone source apportionment technology (OSAT) in a regional transport model. Surface O3 pollution is found to be sensitive to the predominant SWPs, including four O3-polluted types (northeasterly, northerly and southwesterly and anticyclone) and two O3-clean types (cyclone and the Meiyu front). The integrated influences of local chemistry and regional transport are important in O3 pollution under different SWPs. Daily maximum 8-h average (MDA8) O3 holds strong negative and positive correlations with relative humidity and sunshine duration, respectively. Among the six SWPs, the concentration and exceedance of MDA8 O3 reach their maxima under the northerly type on a regional average. Higher O3 levels, particularly under the northerly and northeasterly types, are primarily related to regional transport on various spatial scales. Local production accounts for the largest proportion of O3 sources under the anticyclone type. Under the southwesterly type, favourable weather conditions superimposed on regional transport lead to severe O3 pollution in coastal cities. The impact of super-regional transport is most pronounced along the eastern coast under the cyclone type. Source category analysis shows that transportation and industrial emissions play a prime role in surface O3 formation. This study illustrates the imperative implementation of joint emission control over eastern China to reduce O3 pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Ozone , Rivers , Air Pollutants/analysis , China , Ozone/analysis , Rivers/chemistry , Seasons
20.
Huan Jing Ke Xue ; 40(8): 3421-3430, 2019 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-31854746

ABSTRACT

As one of the air pollution transmission channels around the beijing-Tianjin-Hebei region, Puyang frequently suffer from severe airpollution in autumn and winter. In order to study the characteristics and main sources of fine particulate matter during these periods, manual membrane sampling of PM2.5 was conducted at three national control sites from October 15, 2017, to January 13, 2018. Chemical composition analysis was conducted and, combined with a PMF receptor model, source analysis of the fine particles was also undertaken. The results show that the average mass concentration of PM2.5 in Puyang was 94.16 µg·m-3 in the autumn and winter of 2017, and Pushuihe station was the most polluted site. During the heating season, the three control stations all recorded the frequent occurrence of severe and serious pollution events, while the frequency of mild pollution events decreased. When heavy pollution events occurred, the concentrations of NO2 and CO increased significantly. The main components of PM2.5 were water-soluble ions (52.33%), OCEC (25.32%), and crustal elements (0.08%). The concentrations of NO3- were high while the concentrations of SO42- were low. When heavy pollution occurred, the concentrations of water-soluble ions, OC, EC, and K in PM2.5 increased significantly, while the concentrations of crustal elements decreased. During the sampling period, the conversion ratios of sulfur and nitrogen in Puyang were high and atmospheric oxidation was strong. The transformation of sulfur and nitrogen promoted the occurrence of heavy pollution. Emissions of NOx, CO, and VOCs were higher in Puyang in 2017, and the source apportionment results showed that the main sources of PM2.5 in autumn and winter were secondary inorganic salts (37%), industrial sources (16%), secondary organic aerosol (SOA, 14%), biomass combustion (12%), mobile sources (9%), coal burning (7%), and dust (4%). Secondary transformation played an important role in the development of heavy pollution events in Puyang. It is necessary to focus on the control of emissions from industrial sources, biomass combustion, moving source, and civil coal combustion.

SELECTION OF CITATIONS
SEARCH DETAIL
...