Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Exp Gerontol ; 194: 112512, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971545

ABSTRACT

OBJECTIVE: This study investigated sex-specific pathogenesis mechanisms in Alzheimer's disease (AD) using single-nucleus RNA sequencing (snRNA-seq) data. METHODS: Data from the Gene Expression Omnibus (GEO) were searched using terms "Alzheimer's Disease", "single cell", and "Homo sapiens". Studies excluding APOE E4 and including comprehensive gender information with 10× sequencing methods were selected, resulting in GSE157827 and GSE174367 datasets from human prefrontal cortex samples. Sex-stratified analyses were conducted on these datasets, and the outcomes of the analysis for GSE157827 were compared with those of GSE174367. The findings were validated using expression profiling from the mouse dataset GSE85162. Furthermore, real-time PCR experiments in mice further confirmed these findings. The Seurat R package was used to identify cell types, and batch effects were mitigated using the Harmony R package. Cell proportions by sex were compared using the Mann-Whitney-Wilcoxon test, and gene expression variability was displayed with an empirical cumulative distribution plot. Differentially expressed genes were identified using the FindMarkers function with the MAST test. Transcription factors were analyzed using the RcisTarget R package. RESULTS: Seven cell types were identified: astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, oligodendrocytes, and oligodendrocyte progenitor cells. Additionally, five distinct subpopulations of both endothelial and microglial cells were also identified, respectively. Key findings included: (1) In endothelial cells, genes involved in synapse organization, such as Insulin Like Growth Factor 1 Receptor (IGF1R) and Fms Related Receptor Tyrosine Kinase 1(FLT1), showed higher expression in females with AD. (2) In microglial cells, genes in the ribosome pathway exhibited higher expression in males without AD compared to females (with or without AD) and males with AD. (3) Chromodomain Helicase DNA Binding Protein 2 (CHD2) negatively regulated gene expression in the ribosome pathway in male microglia, suppressing AD, this finding was further validated in mice. (4) Differences between Asians and Caucasians were observed based on sex and disease status stratification. CONCLUSIONS: IGF1R and FLT1 in endothelial cells contribute to AD in females, while CHD2 negatively regulates ribosome pathway gene expression in male microglia, suppressing AD in humans and mice.


Subject(s)
Alzheimer Disease , Endothelial Cells , Microglia , Receptor, IGF Type 1 , Vascular Endothelial Growth Factor Receptor-1 , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Female , Animals , Male , Microglia/metabolism , Humans , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Mice , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Sex Factors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Prefrontal Cortex/metabolism , Mice, Inbred C57BL
2.
Pflugers Arch ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017932

ABSTRACT

Neuropathic pain (NPP) is a refractory pain syndrome, caused by damage or disease of the somatosensory nervous system and characterized by spontaneous pain, hyperalgesia, abnormal pain and sensory abnormality. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA) and Piwi interacting RNA (piRNA), play a notable role in initiation and maintenance of NPP. In this review, we summarize the role of ncRNAs in NPP and their underlaying mechanism. Generally, ncRNAs are interacted with mRNA, protein or DNA to regulate the molecules and signals assciated with neuroinflammation, ion channels, neurotrophic factors and others, and then involved in the occurrence and development of NPP. Therefore, this review not only contributes to deepen our understanding of the pathophysiological mechanism of NPP, but also provides theoretical basis for the development of new therapy strategies for this disorder.

3.
Exp Neurol ; 379: 114841, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38821198

ABSTRACT

Alzheimer's disease (AD) is the most prevalent type of dementia, and its causes are currently diverse and not fully understood. In a previous study, we discovered that short-term treatment with miracle fruit seed (MFS) had a therapeutic effect on AD model mice, however, the precise mechanism behind the effect remains unclear. In this research, we aimed to establish the efficacy and safety of long-term use of MFS in AD model mice. A variety of cytokines and chemokines have been implicated in the development of AD. Previous studies have validated a correlation between the expression levels of C-X-C chemokine receptor type 4 (CXCR4) and disease severity in AD. In this research, we observed an upregulation of CXCR4 expression in hippocampal tissues in the AD model group, which was then reversed after MFS treatment. Moreover, CXCR4 knockout led to improving cognitive function in AD model mice, and MFS showed the ability to regulate CXCR4 expression. Finally, our findings indicate that CXCR4 knockout and long-term MFS treatment produce comparable effects in treating AD model mice. In conclusion, this research demonstrates that therapeutic efficacy and safety of long-term use of MFS in AD model mice. MFS treatment and the subsequent reduction of CXCR4 expression exhibit a neuroprotective role in the brain, highlighting their potential as therapeutic targets for AD.


Subject(s)
Alzheimer Disease , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Mice , Mice, Knockout , Seeds , Mice, Inbred C57BL , Disease Models, Animal , Male , Mice, Transgenic , Hippocampus/metabolism , Hippocampus/drug effects , Amyloid beta-Peptides/metabolism
4.
Heliyon ; 10(7): e27508, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560254

ABSTRACT

Objective: To explore the effect of human urine-derived stem cells (husc) in improving the neurological function of rats with cerebral ischemia-reperfusion (CIR), and report new molecular network by bioinformatics, combined with experiment validation. Methods: After CIR model was established, and husc were transplanted into the lateral ventricle of rats,neurological severe score (NSS) andgene network analysis were performed. Firstly, we input the keywords "Cerebral reperfusion" and "human urine stem cells" into Genecard database and merged data with findings from PubMed so as to get their targets genes, and downloaded them to make Venny intersection plot. Then, Gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and protein-protein interaction (PPI) were performed to construct molecular network of core genes. Lastly, the expressional level of core genes was validated via quantitative real-time polymerase chain reaction (qRT-PCR), and localized by immunofluorescence. Results: Compared with the Sham group, the neurological function of CIR rats was significantly improved after the injection of husc into the lateral ventricle; at 14 days, P = 0.028, which was statistically significant. There were 258 overlapping genes between CIR and husc, and integrated with 252 genes screened from PubMed and CNKI. GO enrichment analysis were mainly involved neutrophil degranulation, neutrophil activation in immune response and platelet positive regulation of degranulation, Hemostasis, blood coagulation, coagulation, etc. KEGG pathway analysis was mainly involved in complement and coagulation cascades, ECM-receptor. Hub genes screened by Cytoscape consist ofCD44, ACTB, FN1, ITGB1, PLG, CASP3, ALB, HSP90AA1, EGF, GAPDH. Lastly, qRT-PCR results showed statistic significance (P < 0.05) in ALB, CD44 and EGF before and after treatment, and EGF immunostaining was localized in neuron of cortex. Conclusion: husc transplantation showed a positive effect in improving neural function of CIR rats, and underlying mechanism is involved in CD44, ALB, and EGF network.

5.
J Nanobiotechnology ; 22(1): 106, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468300

ABSTRACT

Understanding the intricate nanoscale architecture of neuronal myelin during central nervous system development is of utmost importance. However, current visualization methods heavily rely on electron microscopy or indirect fluorescent method, lacking direct and real-time imaging capabilities. Here, we introduce a breakthrough near-infrared emissive curcumin-BODIPY derivative (MyL-1) that enables direct visualization of myelin structure in brain tissues. The remarkable compatibility of MyL-1 with stimulated emission depletion nanoscopy allows for unprecedented super-resolution imaging of myelin ultrastructure. Through this innovative approach, we comprehensively characterize the nanoscale myelinogenesis in three dimensions over the course of brain development, spanning from infancy to adulthood in mouse models. Moreover, we investigate the correlation between myelin substances and Myelin Basic Protein (MBP), shedding light on the essential role of MBP in facilitating myelinogenesis during vertebral development. This novel material, MyL-1, opens up new avenues for studying and understanding the intricate process of myelinogenesis in a direct and non-invasive manner, paving the way for further advancements in the field of nanoscale neuroimaging.


Subject(s)
Boron Compounds , Curcumin , Animals , Mice , Brain/diagnostic imaging , Brain/metabolism , Neurons , Microscopy, Electron
6.
Chem Biol Drug Des ; 103(3): e14475, 2024 03.
Article in English | MEDLINE | ID: mdl-38433560

ABSTRACT

To explore the of Qufeng Tongqiao Prescription in the treatment of cerebral ischemia-reperfusion (CIR) and associated molecular network mechanism. Venny diagram, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis, protein-protein interaction (PPI), hub genes mining, molecular docking, combined with animal experiments and Nissl stain were performed to determine the molecular network mechanism of Qufeng Tongqiao Prescription for CIR treatment. Fifty three intersecting genes between Qufeng Tongqiao Prescription and cerebral ischemia reperfusion were acquired from Venny analysis. GO analysis showed that the main biological process (BP) was response to lipopolysaccharide, and the main cell localization (CC) process was membrane raft, while the most important molecular function (MF) process is Cytokine receptor binding. Moreover, AGE-RAGE signaling pathway in diabetic complications is the most important signaling pathway in KEGG pathway. Through molecular docking, it was found that Astragalus membranaceus was docked with MAPK14, IL4, FOS, IL6, and JUN; pueraria membranaceus was directly docked with JUN and IL4; Acorus acorus was linked to JUN and MAPK14; Ganoderma ganoderma and human were involved in JUN docking, and Ligusticum chuanqi and pueraria could not be docked with MAPK14, respectively. The results of animal experiments showed that Qufeng Tongqiao Prescription significantly improved behavioral performance and reduced the number of neuronal deaths in rats subjected to CIR, and molecular mechanisms are associated with FOS, IL-6, IL4, JUN, and MAPK14, of there, IL-6, as a vital candidator, which has been confirmed by immunostaining detection. Together, Qufeng Tongqiao Prescription has positive therapeutic effect on CIR, and the underlying mechanism is involved MAPK14, FOS, IL4, and JUN network, while IL-6 may be as a vital target.


Subject(s)
Brain Ischemia , Mitogen-Activated Protein Kinase 14 , Humans , Animals , Rats , Interleukin-4 , Interleukin-6 , Molecular Docking Simulation , Brain Ischemia/drug therapy
7.
Sci Rep ; 14(1): 4478, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396140

ABSTRACT

Glycosylation is currently considered to be an important hallmark of cancer. However, the characterization of glycosylation-related gene sets has not been comprehensively analyzed in glioma, and the relationship between glycosylation-related genes and glioma prognosis has not been elucidated. Here, we firstly found that the glycosylation-related differentially expressed genes in glioma patients were engaged in biological functions related to glioma progression revealed by enrichment analysis. Then seven glycosylation genes (BGN, C1GALT1C1L, GALNT13, SDC1, SERPINA1, SPTBN5 and TUBA1C) associated with glioma prognosis were screened out by consensus clustering, principal component analysis, Lasso regression, and univariate and multivariate Cox regression analysis using the TCGA-GTEx database. A glycosylation-related prognostic signature was developed and validated using CGGA database data with significantly accurate prediction on glioma prognosis, which showed better capacity to predict the prognosis of glioma patients than clinicopathological factors do. GSEA enrichment analysis based on the risk score further revealed that patients in the high-risk group were involved in immune-related pathways such as cytokine signaling, inflammatory responses, and immune regulation, as well as glycan synthesis and metabolic function. Immuno-correlation analysis revealed that a variety of immune cell infiltrations, such as Macrophage, activated dendritic cell, Regulatory T cell (Treg), and Natural killer cell, were increased in the high-risk group. Moreover, functional experiments were performed to evaluate the roles of risk genes in the cell viability and cell number of glioma U87 and U251 cells, which demonstrated that silencing BGN, SDC1, SERPINA1, TUBA1C, C1GALT1C1L and SPTBN5 could inhibit the growth and viability of glioma cells. These findings strengthened the prognostic potentials of our predictive signature in glioma. In conclusion, this prognostic model composed of 7 glycosylation-related genes distinguishes well the high-risk glioma patients, which might potentially serve as caner biomarkers for disease diagnosis and treatment.


Subject(s)
Glioma , Humans , Glycosylation , Prognosis , Glioma/genetics , Cell Count , Cell Survival
8.
Neural Regen Res ; 19(9): 2027-2035, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38227532

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202409000-00035/figure1/v/2024-01-16T170235Z/r/image-tiff Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy, neurosensory impairments, and cognitive deficits, and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy. The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored. However, the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated. In this study, we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function. Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats. Following transplantation of human placental chorionic plate-derived mesenchymal stem cells, interleukin-3 expression was downregulated. To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy, we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA. We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown. Furthermore, interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy. The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy, and this effect was mediated by interleukin-3-dependent neurological function.

9.
Heliyon ; 10(1): e22808, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38169755

ABSTRACT

Spinal cord injury (SCI) is a severe complication of spinal trauma with high disability and mortality rates. Effective therapeutic methods to alleviate neurobehavioural deficits in patients with SCI are still lacking. In this study, we established a spinal cord contusion (SCC) model in adult Sprague Dawley rats. Induced pluripotent stem cell-derived A2B5+ oligodendrocyte precursor cells (iP-A2B5+OPCs) were obtained from mouse embryonic fibroblasts and injected into the lesion sites of SCC rats. Serological testing and magnetic resonance imaging were employed to determine the effect of iP-A2B5+OPCs cell therapy. The Basso-Beattie-Bresnahan score and inclined plane test were performed on days 1, 3, 7, and 14 after cell transplantation, respectively. Differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) were detected by microarray analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to analyse the biological functions of these lncRNAs and mRNAs. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to verify variations in the expression of crucial target genes. The results demonstrated that induced pluripotent stem cells exhibited embryonic stem cell-like morphology and could differentiate into diverse neural cells dominated by oligodendrocytes. The neurobehavioural performance of rats treated with iP-A2B5+OPCs transplantation was better than that of rats with SCC without cell transplantation. Notably, we found that 22 lncRNAs and 42 mRNAs were concurrently altered after cell transplantation, and the key lncRNA (NR_037671) and target gene (Cntnap5a) were identified in the iP-A2B5+OPCs group. Moreover, RT-qPCR revealed that iP-A2B5+OPCs transplantation reversed the downregulation of NR_037671 induced by SCC. Our findings indicated that iP-A2B5+OPCs transplantation effectively improves neurological function recovery after SCC, and the mechanism might be related to alterations in the expression of lncRNAs and mRNAs, such as NR_037671 and Cntnap5a.

10.
Gene ; 905: 148219, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38286267

ABSTRACT

OBJECTIVE: To examine the therapeutic mechanism of astragaloside IV (AS-IV) in the management of retinal ganglion cell (RGC) injury induced by high glucose (HG), a comprehensive approach involving the integration of network pharmacology and conducting in vitro and in vivo experiments was utilized. METHODS: A rat model of diabetic retinopathy (DR) injury was created by administering streptozotocin through intraperitoneal injection. Additionally, a model of RGC injury induced by HG was established using a glucose concentration of 0.3 mmol/mL. Optical coherence tomography (OCT) images were captured 8 weeks after the injection of AS-IV. AS-IV and FBS were added to the culture medium and incubated for 48 h. The viability of cells was assessed using a CCK-8 assay, while the content of reactive oxygen species (ROS) was measured using DCFH-DA. Apoptosis was evaluated using Annexin V-PI. To identify the targets of AS-IV, hyperglycemia, and RGC, publicly available databases were utilized. The Metascape platform was employed for conducting GO and KEGG enrichment analyses. The STRING database in conjunction with Cytoscape 3.7.2 was used to determine common targets of protein-protein interactions (PPIs) and to identify the top 10 core target proteins in the RGC based on the MCC algorithm. qRT-PCR was used to measure the mRNA expression levels of the top10 core target proteins in RGCs. RESULTS: OCT detection indicated that the thickness of the outer nucleus, and inner and outer accessory layers of the retina increased in the AS-IV treated retina compared to that in the DM group but decreased compared to that in the CON group. Coculturing RGC cells with AS-IV after HG induction resulted in a significant increase in cell viability and a decrease in ROS and apoptosis, suggesting that AS-IV can reduce damage to RGC cells caused by high glucose levels by inhibiting oxidative stress. There were 14 potential targets of AS-IV in the treatment of RGC damage induced by high glucose levels. The top 10 core target proteins identified by the MCC algorithm were HIF1α, AKT1, CTNNB1, SMAD2, IL6, SMAD3, IL1ß, PPARG, TGFß1, and NOTCH3. qRT-PCR analysis showed that AS-IV could upregulate the mRNA expression levels of SMAD3, TGF-ß1, and NOTCH3, and downregulate the mRNA expression levels of HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1ß in high glucose-induced RGC cells. CONCLUSION: The findings of this study validate the efficacy of astragaloside IV in the treatment of DR and shed light on the molecular network involved. Specifically, HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1ß were identified as the crucial candidate molecules responsible for the protective effects of astragaloside IV on RGCs.


Subject(s)
Diabetic Retinopathy , Retinal Ganglion Cells , Saponins , Triterpenes , Rats , Animals , Retinal Ganglion Cells/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/genetics , Glucose/pharmacology , Glucose/metabolism , Computational Biology , RNA, Messenger/metabolism
11.
CNS Neurosci Ther ; 30(4): e14535, 2024 04.
Article in English | MEDLINE | ID: mdl-38168094

ABSTRACT

INTRODUCTION: Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS: This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS: Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS: Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Spinal Cord Injuries , Animals , Rats , Luciferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/pathology , GAP-43 Protein/genetics , GAP-43 Protein/metabolism
12.
Article in English | MEDLINE | ID: mdl-38204243

ABSTRACT

BACKGROUND: Retinal aging is one of the common public health problems caused by population aging and has become an important cause of acquired vision loss in adults. The aim of this study was to determine the role of human umbilical cord mesenchymal stem cells (hUCMSCs) in delaying retinal ganglion cell (RGC) aging and part of the network of molecular mechanisms involved. METHODS: A retinal ganglion cell senescence model was established in vitro and treated with UCMSC. Successful establishment of the senescence system was demonstrated using ß- galactosidase staining. The ameliorative effect of MSC on senescence was demonstrated using CCK8 cell viability and Annexin V-PI apoptosis staining. The relevant targets of RGC, MSC, and senescence were mainly obtained by searching the GeneCards database. The protein interaction network among the relevant targets was constructed using the String database and Cytoscape, and 10 key target genes were calculated based on the MCC algorithm, based on which Gene ontologies (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. Changes in relevant target genes were detected using real-time fluorescence quantitative PCR and the mechanism of action of UCMSC was determined by RNA interference. RESULTS: ß-galactosidase staining showed that UCMSC significantly reduced the positive results of RGC. The retinal aging process was alleviated. The bioinformatics screen yielded 201 shared genes. 10 key genes were selected by the MCC algorithm, including vascular endothelial growth factor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), albumin (ALB), interleukin- 6 (IL6), tumor necrosis factor (TNF), tumor protein P53 (TP53), insulin (INS), matrix metalloproteinase 9 (MMP9), epidermal growth factor (EGF), interleukin-1ß (IL1B), and enrichment to related transferase activity and kinase activity regulated biological processes involved in oxidative stress and inflammation related pathways. In addition, PCR results showed that all the above molecules were altered in expression after UCMSC involvement. CONCLUSION: This experiment demonstrated the role of UCMSC in delaying retinal ganglion cell senescence and further elucidated that UCMSC may be associated with the activation of VEGFA, TP53, ALB, GAPDH, IL6, IL1B, MMP9 genes and the inhibition of INS, EGF, and TNF in delaying retinal senescence.

13.
Biochem Genet ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273154

ABSTRACT

To investigate the effect and potential mechanism of human-derived urine stem cells (hUSCs) in inhibiting retinal aging by using experimental and bioinformatics. Retinal pigment epithelial cells cultured in vitro, which were randomly divided into normal group, aging group and supernatant of hUSCs group. Cell counting kit-8 detection, senescence-related ß-galactosidase, and Annexin V/PI staining were performed to detect cell viability, senescence, and apoptosis. Subsequently, bioinformatics methods were used to explore the underlying mechanisms, in which, targets both hUSCs and aging retina-related targets were obtained from GeneCards. Then, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and protein-protein interaction network were analysis, and the expressional level of hub gene was validated by q-PCR. Supernatant addition of hUSCs promoted markedly cellular proliferation, improved viability and inhibited senescence and apoptosis in vitro. A total of 1476 hUSCs-related targets (Relevance score > 20), 692 retinal disease-related targets, and 732 targets related to disease of aging were selected from GeneCards database, and 289 common targets of hUSCs against aging retina were confirmed through Venn analysis. Enrichment analysis demonstrated that hUSCs might exert its anti-apoptosis efficacy in multiple biological processes, including oxidative stress, inflammation and apoptosis, and core targets were associated with HIF-1, MAPK and PI3K-Akt signal. hUSCs inhibited retinal senescence by regulating multiply targets and signaling pathways, of these, HIF-1, MAPK, and PI3K may be important candidates.

14.
Eur J Med Res ; 29(1): 60, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38243268

ABSTRACT

OBJECTIVE: To investigate the effect of salidroside (SAL) in protecting retinal ganglion cell (RGC) from pyroptosis and explore associated molecular network mechanism in diabetic retinapathy (DR) rats. METHODS: HE, Nissl and immunofluorescence staining were used to observe the retinal morphological change, and the related target genes for salidroside, DR and pyroptosis were downloaded from GeneCard database. Then Venny, PPI, GO, KEGG analysis and molecular docking were used to reveal molecular network mechanism of SAL in inhibiting the pyroptosis of RGC. Lastly, all hub genes were confirmed by using qPCR. RESULTS: HE and Nissl staining showed that SAL could improve the pathological structure known as pyroptosis in diabetic retina, and the fluorescence detection of pyroptosis marker in DM group was the strongest, while they decreased in the SAL group(P < 0.05)). Network pharmacological analysis showed 6 intersecting genes were obtained by venny analysis. GO and KEGG analysis showed 9 biological process, 3 molecular function and 3 signaling pathways were involved. Importantly, molecular docking showed that NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1 could combine with salidroside, and qPCR validates the convincible change of CASP3, NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1. CONCLUSION: Salidroside can significantly improve diabetes-inducedRGC pyrotosis in retina, in which, the underlying mechanism is associated with the NLRP3, NFEZL2 and NGKB1 regulation.


Subject(s)
Diabetes Mellitus , Glucosides , Phenols , Retinal Diseases , Animals , Rats , Retinal Ganglion Cells , Sirtuin 1 , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Molecular Docking Simulation , Network Pharmacology , Pyroptosis
15.
Brain Res ; 1822: 148580, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37709160

ABSTRACT

BACKGROUND: This study aimed to observe changes of rats' brain infarction and blood vessels during neonatal hypoxic ischemic encephalopathy (NHIE) modeling by Transcranial Doppler Ultrasonography (TCD) so as to assess the feasibility of TCD in evaluating NHIE modeling. METHODS: Postnatal 7-days (d)-old Sprague Dawley (SD) rats were divided into the Sham group, hypoxic-ischemic (HI) group, and hypoxia (H) group. Rats in the HI group and H group were subjected to hypoxia-1 hour (h), 1.5 h and 2.5 h, respectively. Evaluation on brain lesion was made based on Zea-Longa scores, hematoxylin-eosin (HE) staining and Nissl staining. The brain infarction and blood vessels of rats were monitored and analyzed under TCD. Correlation analysis was applied to reveal the connection between hypoxic duration and infarct size detected by TCD or Nissl staining. RESULTS: In H and HI modeling, longer duration of hypoxia was associated with higher Zea-Longa scores and more severe nerve damage. On the 1 d after modeling, necrosis was found in SD rats' brain indicated by HE and Nissl staining, which was aggravated as hypoxic duration prolonged. Alteration of brain structures and blood vessels of SD rats was displayed in Sham, HI and H rats under TCD. TCD images for coronal section revealed that brain infarct was detected at the cortex and there was marked cerebrovascular back-flow of HI rats regardless of hypoxic duration. On the 7 d after modeling, similar infarct was detected under TCD at the cortex of HI rats in hypoxia-1 h, 1.5 h and 2.5 h groups, whereas the morphological changes were deteriorated with longer hypoxic time. Correlation analysis revealed positive correlation of hypoxic duration with infarct size detected by histological detection and TCD. CONCLUSIONS: TCD dynamically monitored cerebral infarction after NHIE modeling, which will be potentially served as a useful auxiliary method for future animal experimental modeling evaluation in the case of less animal sacrifice.


Subject(s)
Hypoxia-Ischemia, Brain , Rats , Animals , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/pathology , Rats, Sprague-Dawley , Animals, Newborn , Ultrasonography, Doppler, Transcranial , Brain/pathology , Ischemia/pathology , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/pathology , Brain Infarction/pathology
16.
J Gene Med ; 26(1): e3615, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123364

ABSTRACT

BACKGROUND: The aim of this study was to determine the effect of human urine-derived stem cells (HUSCs) for the treatment of spinal cord injury (SCI) and investigate associated the molecular network mechanism by using bioinformatics combined with experimental validation. METHODS: After the contusive SCI model was established, the HUSC-expressed specific antigen marker was implanted into the injury site immediately, and the Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) was utilized to evaluate motor function so as to determine the effect of HUSCs for the neural repair after SCI. Then, the geneCards database was used to collect related gene targets for both HUSCs and SCI, and cross genes were merged with the findings of PubMed screen. Subsequently, protein-protein interaction (PPI) network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment, as well as core network construction, were performed using Cytoscape software. Lastly, real-time quantitative polymerase chain reaction (PCR) and immunofluorescence were employed to validate the mRNA expression and localization of 10 hub genes, and two of the most important, designated as cadherin 1 (CDH1) and integrin subunit beta 1 (ITGB1), were identified successfully. RESULTS: The immunophenotypes of HUSCs were marked by CD90+ and CD44+ but not CD45, and flow cytometry confirmed their character. The expression rates of CD90, CD73, CD44 and CD105 in HUSCs were 99.49, 99.77, 99.82 and 99.51%, respectively, while the expression rates of CD43, CD45, CD11b and HLA-DR were 0.08, 0.30, 1.34 and 0.02%, respectively. After SCI, all rats appeared to have severe motor dysfunction, but the BBB score was increased in HUSC-transplanted rats compared with control rats at 28 days. By using bioinformatics, we obtained 6668 targets for SCI and 1095 targets for HUSCs and identified a total of 645 cross targets between HUSCs and SCI. Based on the PPI and Cytoscape analysis, CD44, ACTB, FN1, ITGB1, HSPA8, CDH1, ALB, HSP90AA1 and GAPDH were identified as possible therapeutic targets. Enrichment analysis revealed that the involved signal pathways included complement and coagulation cascades, lysosome, systemic lupus erythematosus, etc. Lastly, quantificational real-time (qRT)-PCR confirmed the mRNA differential expression of CDH1/ITGB1 after HUSC therapy, and glial fibrillary acidic protein (GFAP) immunofluorescence staining showed that the astrocyte proliferation at the injured site could be reduced significantly after HUSC treatment. CONCLUSIONS: We validated that HUSC implantation is effective for the treatment of SCI, and the underlying mechanisms associated with the multiple molecular network. Of these, CDH1 and ITGB1 may be considered as important candidate targets. Those findings therefore provided the crucial evidence for the potential use of HUSCs in SCI treatment in future clinic trials.


Subject(s)
Spinal Cord Injuries , Rats , Humans , Animals , Rats, Sprague-Dawley , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Stem Cells , RNA, Messenger/metabolism , Integrins/therapeutic use
17.
J Med Primatol ; 52(6): 384-391, 2023 12.
Article in English | MEDLINE | ID: mdl-37807223

ABSTRACT

OBJECTIVE: Rhesus monkeys are increasingly used in biomedical research, which makes their hematological and biochemical parameters increasingly important in preclinical research. Since age and sex can influence blood parameters, establishing reference intervals for such parameters based on age and sex becomes along with identifying the effect of age and sex on those parameters. METHODS: A total of 1385 healthy Chinese rhesus monkeys (548 males and 837 females) anesthetized with ketamine were selected and segregated by age (six groups) and sex. A total of 21 hematological and 26 biochemical parameters were measured, and the effects of age and sex were analyzed. RESULTS: We established baseline indices for hematological and biochemical parameters based on age and sex, separately, and observed significant impacts of age, sex, and age-sex interactions on blood parameters. Among different age groups, significant differences were found in WBC, NEUT%, LYM%, EO%, LYM#, EO#, MCV, RDW-CV, PLT, MPV, PDW, PCT, TP, Alb, GLB, A/G, ALT, AST, ALP, TBIL, GGT, BUN, Cre, GLU, CK, TRIG, LDL, HCY, IL-6 FOL, Vit B12, VIT D-T, PTH, and AMH. Additionally, significant differences were observed in RBC, HGB, HCT, MPV, Alb, BUN, Cre, GLU, CHOL, TRIG, HDL, LDL, HCY, and VIT D-T between the two sexes. An age-sex interaction exerted a significant effect on WBC, NEUT#, MCV, MCHC, PDW, GLB, ALP, Cre, CHOL, TRIG, HDL, LDL, HCY, IL-6, Vit B12, VIT D-T. However, neither age, sex, and age-sex interactions exerted significant effects on MO%, MOMO#, MCH, RDW-SD, CRP, and CT. CONCLUSION: Our study investigated the blood parameters of rhesus monkeys to provide a reference basis for rhesus monkey-related scientific experimental research.


Subject(s)
Ketamine , Male , Female , Animals , Macaca mulatta , Ketamine/pharmacology , Interleukin-6
18.
Eur J Pharmacol ; 958: 175947, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37659689

ABSTRACT

OBJECTIVE: To reveal the core mechanism of berberine (BBR) in the treatment of diabetic retinopathy (DR), by using Four-dimensional independent data acquisition (4D-DIA) proteomics combined bioinformatics analysis with experimental validation. METHODS: DR injury model was established by injecting streptozotocin intraperitoneally. At 8 weeks after BBR administration, optical coherence tomography (OTC) photos and Hematoxylin-eosin staining from retina in each group were performed, then the retina was collected for 4D-DIA quantitative proteomics detection. Moreover, difference protein analysis, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI) network, as well as molecular docking was performed, respectively. In the part of experiment, Western blot (WB) and immunofluorescent staining was used to confirm the change and distribution of carbonic anhydrase 1 (CA1), one of the most important molecules from quantitative PCR detection. Lastly, RNA knockdown was used to determine the crucial role of CA1 in retinal pigment epithelial cells (RPEs) administrated with berberine. RESULTS: OCT detection showed that the outer nucleus, inner layer and outer accessory layer of RPEs were thinned in DR group, compared with in sham one, while they were thickened after berberine administration, when compared with in DR group. 10 proteins were screened out by using proteomic analysis and Venny cross plot, in which, denn domain containing 1A (DENND1A) and UTP6 small subunit processome component (UTP6) was down-regulated, while ATPase copper transporting alpha (ATP7A), periplakin (PPL), osteoglycin (OGN), nse1 Homolog (NSMCE1), membrane metalloendopeptidase (MME), lim domain only 4 (LMO4), CA1 and fibronectin 1 (FN1) was up-regulated in DR group, and the BBR treatment can effectively reverse their expressions. PPI results showed that 10 proteins shared interactions with each other, but only ATP7A, FN1 and OGN exhibited directly associated with each other. Moreover, we enlarged the linked relation up to 15 genes in network, based on 10 proteins found from proteomics detection, so as to perform deep GO and KEGG analysis. As a result, the most important biological process is involving rRNA processing; the most important cell component is small subunit processor; the most important molecular function is Phospholipid binding; the KEGG pathway was Ribosome biogenesis in eukaryotes. Moreover, molecular docking showed that LMO4, ATP7A, PPL, NSMCE1, MME, CA1 could form a stable molecular binding pattern with BBR. Of these, the mRNA expression of CA1, PPL and ATP7A and the protein level of CA1 was increased in DR, and decreased in BBR group. Lastly, CA1 RNA knockdown confirmed the crucial role of CA1 in RPE administered with BBR. CONCLUSION: The present findings confirmed the role of BBR in DR treatment and explained associated molecular network mechanism, in which, CA1 could be considered as a crucial candidate in the protection of RPEs with berberine treatment.

19.
Math Biosci Eng ; 20(8): 14201-14221, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37679132

ABSTRACT

Feature selection has always been an important topic in machine learning and data mining. In multi-label learning tasks, each sample in the dataset is associated with multiple labels, and labels are usually related to each other. At the same time, multi-label learning has the problem of "curse of dimensionality". Feature selection therefore becomes a difficult task. To solve this problem, this paper proposes a multi-label feature selection method based on the Hilbert-Schmidt independence criterion (HSIC) and sparrow search algorithm (SSA). It uses SSA for feature search and HSIC as feature selection criterion to describe the dependence between features and all labels, so as to select the optimal feature subset. Experimental results demonstrate the effectiveness of the proposed method.

20.
J Cell Mol Med ; 27(14): 1975-1987, 2023 07.
Article in English | MEDLINE | ID: mdl-37340587

ABSTRACT

The expression changes of baculovirus inhibitor of apoptosis repeat-containing protein5 in brain glioma after administration of Scutellarin was detected. To explore the effort of scutellarin on anti-glioma by downregulating BIRC5.The effect of scutellarin on tumour growth and animal survival was detected by administering scutellarin to nude mice subcutaneous tumour formation and SD rats in situ tumour formation models. A significantly different gene BIRC5 was found by using the combination of TCGA databases and network pharmacology. And then qPCR was performed to detect the expression of BIRC5 in glioma tissues, cells and normal brain tissues and glial cells. CCK-8 was used to detect the IC50 of scutellarin on glioma cells. The wound healing assay, flow cytometry and MTT test were used to detect the effect of scutellarin on the apoptosis and proliferation of glioma cells. The expression of BIRC5 in glioma tissues was significantly higher than that in normal brain tissues. Scutellarin can significantly reduce tumour growth and improve animal's survival. After scutellarin was administered, the expression of BIRC5 in U251 cells was significantly reduced. And after same time, apoptosis increased and cell proliferation was inhibited. This original research showed that scutellarin can promote the apoptosis of glioma cells and inhibit the proliferation by downregulating the expression of BIRC5.


Subject(s)
Brain Neoplasms , Glioma , Mice , Rats , Animals , Mice, Nude , Rats, Sprague-Dawley , Apoptosis , Cell Proliferation , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Cell Line, Tumor , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...